α在梯度下降法中称作为学习率或者步长
需要通过控制α来控制每一步的距离,以保证不要走的太快,错过最低点,也要同时保证速度不能走的太慢
import numpy as np
import matplotlib.pyplot as plt
## 1. 导入数据data.csv
points = np.genfromtxt('data.csv',delimiter=',')
## points 二维数组
##[[ 32.50234527, 31.70700585],
##[ 53.42680403, 68.77759598]]
## 提取points 中的两列数据,分别作为x,y
x=points[:,0]##第一列
y=points[:,1]##第二列
## 用plt画出散点图
plt.scatter(x,y)
plt.show()
### 2.定义损失函数
#损失函数是系数的函数,另外还要传入数据的x,y
def compute_cost(w,b,points):
total_cost = 0
M = len(points)
# 逐点计算平方损失误差,然后求平均数
for i in range(M):
x = points[i,0]
y = points[i,1]
total_cost+= (y - w*x - b)**2
return total_cost/M
## 3.定义模型的超参数
alpha=0.0001
initial_w = 0 #初始值
initial_b = 0
num_iter = 10 #迭代次数
## 4.定义核心梯度下降算法函数
def grad_desc(points,initial_w,initial_b,alpha,num_iter):
w = initial_w
b = initial_b
# 定义一个list保存所有的损失函数值,用来显示下降的过程
cost_list = []
for i in range(num_iter):
cost_list.append(compute_cost(w,b,points))
w ,b = step_grad_desc(w,b,alpha,points) ##每一步的梯度下降
return [w,b,cost_list]
def step_grad_desc(current_w,current_b,alpha,points):
sum_grad_w = 0
sum_grad_b = 0
M = len(points)
# 对每个点带入公式就和
for i in range(M):
x = points[i,0]
y = points[i,1]
sum_grad_w += ( current_w * x + current_b - y)* x
sum_grad_b += ( current_w * x + current_b - y)
# 用公式求当前梯度
grad_w = 2/M * sum_grad_w
grad_b = 2/M * sum_grad_b
#梯度下降,更新当前的w和b
update_w = current_w - alpha*grad_w
update_b = current_b - alpha*grad_b
print(grad_w,"--------",grad_b,"-------",update_w,"------",update_b)
return update_w,update_b
## 5.测试:运行梯度下架算法计算最优的W 和 b
w,b,cost_list =grad_desc(points,initial_w,initial_b,alpha,num_iter)
print("w is :",w)
print("b is :",b)
cost = compute_cost(w,b,points)
print("cost is ",cost)
plt.plot(cost_list) # 不指定x,y的话,默认下标为x轴,值为y轴
plt.show()
## 6. 画出拟合曲线
plt.scatter(x,y) ##散点图
# 针对每一个x,计算出预测的y值
pred_y = w * x + b
plt.plot(x,pred_y,c='r') ##点图
plt.show()