前言:这几天一直都在研究模糊聚类。感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类。
一:模糊数学
我们大家都知道计算机其实只认识两个数字0,1。我们平时写程序其实也是这样if 1 then do.永远这种模式,在这种模式中,一个元素要么属于这个集合,要么不属于这个集合,但是对我们现在介绍的模糊集来说,某个元素可能部分属于这个集合,又可能部分属于另外的集合,显然,例如,一个男人(1表示),一个女人(0表示),但是随着科学技术的发展,出现了人妖这个生物(可能0.3属于男人,0.7属于女人).这样如果用0,1就显得不太恰当了,那我们该如何表示呢,且听我慢慢道来。
开始之前先介绍模糊数学几种不同的名称:
模糊集:给定一个论域 U ,那么从 U 到单位区间 [0,1] 的一个映射
称为 U 上的一个模糊集,或 U 的一个模糊子集. 模糊集可以记为 A 。 映射(函数) μA(·) 或简记为 A(·) 叫做模糊集 A 的隶属函数。 对于每个 x ∈ U , μA(x) 叫做元素 x 对模糊集 A 的隶属度。
模糊逻辑:它是一种相对于传统是或者不是的二值逻辑而言的。例如下图:
,如果这个人在B里面,那么很好理解,人在B里面为1,但是如果出现下列这种情况呢:
,显然用上述的逻辑就行不通了,但是可以这样表示在(A,B)=(0,6,0.4),o,6在A, 0,4在B,这样完美解决。其实拓展成3,4,5也都一样。类似于,我们看周星驰的赌侠,反派用电脑分析,牌的可能性。其实跟这个道理差不多
模糊矩阵:设R=(rij)mxn,若0<=rij<=1,那么称该矩阵为模糊矩阵。若矩阵元素只有0,1的时候成为布尔矩阵。如果对角线上都是一,则这个矩阵称为自反矩阵、
模糊矩阵的关系以及并交与计算:
假设
,
都是模糊矩阵。
交运算:
并运算:
余运算:
例子如下(画的比较丑,请见谅):
模糊矩阵的合成:
设
为模糊矩阵的幂。
定义:若A为n阶方阵,定义:
首先模糊数学的基础就补充到这里了。下面来看看。FCM算法。
二 FCM算法
2.1 FCM算法简介
FCM算法首先是由E. Ruspini提出来的,后来J. C. Dunn与J. C. Bezdek将E. Ruspini算法从硬聚类算法推广成模糊聚类算法。FCM算法是基于对目标函数的优化基础上的一种数据聚类方法。聚类结果是每一个数据点对聚类中心的隶属程度,该隶属程度用一个数值来表示。FCM算法是一种无监督的模糊聚类方法,在算法实现过程中不需要人为的干预。这种算法的不足之处:首先,算法中需要设定一些参数,若参数的初始化选取的不合适,可能影响聚类结果的正确性;其次,当数据样本集合较大并且特征数目较多时,算法的实时性不太好。
2.2 FCM算法的实现原理
我们的FCM算法是从硬划分而来的。
硬划分FCM算法的目标函数:
。U表示原矩阵,p表示聚类中心,dik表示样本点xk与第i个类的样本原型pi之间的失真度,一般是用两个向量之间的距离表示。
软划分FCM的目标函数:
一般性模糊聚类分析的目标函数:
,A表示权重。
求解过程如下(把我以前写的截图发来):
得到:
求解聚类中心:
得到聚类中心:
FCM算法执行流程:
安利一波(百度脑图,这是我认为百度做的比较有良心的东西了。我这个就是用百度脑图画的)
三 FCM的Matlab实现
function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)
% 模糊 C 均值聚类 FCM: 从随机初始化划分矩阵开始迭代
% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)
% 输入:
% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,
% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量
% 的维数,N 为样本点的个数
% C: 聚类数,1
% plotflag: 聚类结果 2D/3D 绘图标记,0 表示不绘图,为缺省值
% M: 加权指数,缺省值为 2
% epsm: FCM 算法的迭代停止阈值,缺省值为 1.0e-6
% 输出:
% U: C×N 型矩阵,FCM 的划分矩阵
% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型
% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中
% 心 i 到样本点 j 的距离为 Dist(i,j)
% Cluster_Res: 聚类结果,共 C 行,每一行对应一类
% Obj_Fcn: 目标函数值
% iter: FCM 算法迭代次数
% See also: fuzzydist maxrowf fcmplot
if nargin<5
epsm=1.0e-6;
end
if nargin<4
M=2;
end
if nargin<3
plotflag=0;
end
[N,S]=size(Data);m=2/(M-1);iter=10000;
Dist(C,N)=0; U(C,N)=0; P(C,S)=0;
% 随机初始化划分矩阵
U0 = rand(C,N);
U0=U0./(ones(C,1)*sum(U0));
% FCM 的迭代算法
while true
% 迭代计数器
iter=iter+1;
% 计算或更新聚类中心 P
Um=U0.^M;
P=Um*Data./(ones(S,1)*sum(Um'))';
% 更新划分矩阵 U
for i=1:C
for j=1:N
Dist(i,j)=fuzzydist(P(i,:),Data(j,:));
end
end
U=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));
% 目标函数值: 类内加权平方误差和
if nargout>4 | plotflag
Obj_Fcn(iter)=sum(sum(Um.*Dist.^2));
end
% FCM 算法迭代停止条件
if norm(U-U0,Inf) break
end
U0=U;
end
% 聚类结果
if nargout > 3
res = maxrowf(U);
for c = 1:
v = find(res==c);
Cluster_Res(c,1:length(v))=v;
end
end
% 绘图
if plotflag
fcmplot(Data,U,P,Obj_Fcn);
end
我用的数据集聚类结果:
感觉效果好挺好的。
今天的模糊聚类就讲到这里了希望大家点个关注,以及批评指正。