Human3.6m数据处理(mhformer代码解读)

对于3d人体姿态估计任务中数据集human3.6m的处理

        写在最前面:这是我自己的理解,说的不一定对。

        human3.6m有很多格式的数据,包括视频、2d ground truth、3d ground truth,还分为xyz坐标的表示形式和旋转向量表示形式,这篇只用到2d 和3d ground truth(坐标表示的)。

        这篇csdn以cvpr2022的mhformer为例,基本上videopose3d之后数据处理的方式都差不多。

源码地址:

GitHub - Vegetebird/MHFormer: [CVPR 2022] MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimationicon-default.png?t=N7T8https://github.com/Vegetebird/MHFormer

1  数据集下载

        在代码dataset下的readme中给出了processed data的下载地址,由论文VideoPose3D给出。

        (不要从官网下,那个需要实验室申请,很麻烦,点最后的here下载,下面是下载地址)https://drive.google.com/drive/folders/112GPdRC9IEcwcJRyrLJeYw9_YV4wLdKC?usp=sharingicon-default.png?t=N7T8https://drive.google.com/drive/folders/112GPdRC9IEcwcJRyrLJeYw9_YV4wLdKC?usp=sharing        下载的数据放到代码dataset下:

        包括3d, 2d ground truth, 由cpn获得的2d label

|-- dataset
|   |-- data_3d_h36m.npz
|   |-- data_2d_h36m_gt.npz
|   |-- data_2d_h36m_cpn_ft_h36m_dbb.npz

2  数据格式解析

       由官网信息及各种对数据集介绍的帖子得知,human3.6m数据的具体内容是人体的32个关键点的坐标信息。

        可以用debug查看内容               Human3.6m数据处理(mhformer代码解读)_第1张图片

图2-1 data_3d_h36m.npz的具体内容示意图

        可以看到,具体内容包括S1等多个subject的数据,每个subject分为15个action,action下是具体的xyz坐标信息。

3 模型的数据处理部分

        3.1 3d数据加载 (Human36mDataset)

    root_path = opt.root_path
    dataset_path = root_path + 'data_3d_' + opt.dataset + '.npz'

    dataset = Human36mDataset(dataset_path, opt)
    actions = define_actions(opt.actions)

        加载3d数据集,这里用到Human36mDataset类(common->load_data_hm36.py中):

        这个类主要用于加载和处理数据,具体来说有两个作用,一:复制相机参数到每一个subject、action的数据下(由原来的position变为 position和camera两块数据);二:remove不需要的点(从32个keypoints到17个keypoints)

        ps:1 相机参数说明:

        相机参数可以用于坐标系的转换等,分为内部参数(intrinsic_params)和外部参数(extrinsic_params)

        内参:

  • 'id':相机的唯一标识符。
  • 'center':相机的中心坐标,是一个包含两个元素的列表,分别表示x和y坐标。
  • 'focal_length':相机的焦距,是一个包含两个元素的列表,分别表示主焦距和次焦距。
  • 'radial_distortion':径向畸变系数,是一个包含三个元素的列表。
  • 'tangential_distortion':切向畸变系数,是一个包含两个元素的列表。
  • 'res_w':相机的水平分辨率。
  • 'res_h':相机的垂直分辨率。
  • 'azimuth':相机的方位角。

        外参:

  • 'orientation':相机的旋转矩阵,是一个包含四个元素的列表,分别表示四元数的四个分量。
  • 'translation':相机的平移向量,是一个包含三个元素的列表,分别表示x、y和z方向上的平移距离。

        ps:2 世界坐标相机坐标说明:

        世界坐标系就是正常的坐标系,3d ground truth的坐标系。

        说一下相机坐标系:相机坐标系是在相机上建立的坐标系。这个坐标系的原点位于小孔,z轴与光轴重合,x轴和y轴平行投影面。

        世界坐标->相机坐标:世界坐标 * 旋转矩阵 + 平移变换 -> 相机坐标(大概是这样,就是说复制相机参数是用于坐标转换的)

        为什么要转换: 我的理解是,原数据每个subject,每个action都有4个机位的视频,对于每一段视频都有自己对应的3d label,而3d ground truth里只是一个实验室的坐标系,所以用相机参数进行转换,可以得到对应的4份3d label

class Human36mDataset(MocapDataset):
    def __init__(self, path, opt, remove_static_joints=True):
        super().__init__(fps=50, skeleton=h36m_skeleton)
        self.train_list = ['S1', 'S5', 'S6', 'S7', 'S8']
        self.test_list = ['S9', 'S11']

        self._cameras = copy.deepcopy(h36m_cameras_extrinsic_params)
        for cameras in self._cameras.values():
            for i, cam in enumerate(cameras):
                cam.update(h36m_cameras_intrinsic_params[i])
                for k, v in cam.items():
                    if k not in ['id', 'res_w', 'res_h']:
                        cam[k] = np.array(v, dtype='float32') 

                if opt.crop_uv == 0:
                    cam['center'] = normalize_screen_coordinates(cam['center'], w=cam['res_w'], h=cam['res_h']).astype(
                        'float32')
                    cam['focal_length'] = cam['focal_length'] / cam['res_w'] * 2

                if 'translation' in cam:
                    cam['translation'] = cam['translation'] / 1000 

                cam['intrinsic'] = np.concatenate((cam['focal_length'],
                                                   cam['center'],
                                                   cam['radial_distortion'],
                                                   cam['tangential_distortion']))

        data = np.load(path,allow_pickle=True)['positions_3d'].item()

        self._data = {}
        for subject, actions in data.items():
            self._data[subject] = {}
            for action_name, positions in actions.items():
                self._data[subject][action_name] = {
                    'positions': positions,
                    'cameras': self._cameras[subject],
                }

        if remove_static_joints:
            self.remove_joints([4, 5, 9, 10, 11, 16, 20, 21, 22, 23, 24, 28, 29, 30, 31])

            self._skeleton._parents[11] = 8
            self._skeleton._parents[14] = 8

    def supports_semi_supervised(self):
        return True

        上面是Human36mDataset类代码,通过3.1 3d数据加载这一步,3d的数据到了一个Human36mDataset类的对象中,包括position和camera。

        3.2 数据处理(包括2d和3d)(Fusion、ChunkedGenerator

    if opt.train:
        train_data = Fusion(opt=opt, train=True, dataset=dataset, root_path=root_path)
        train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=opt.batch_size,
                                                       shuffle=True, num_workers=int(opt.workers), pin_memory=True)

    test_data = Fusion(opt=opt, train=False, dataset=dataset, root_path =root_path)
    test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=opt.batch_size,
                                                  shuffle=False, num_workers=int(opt.workers), pin_memory=True)

       用到Fusion类(common->load_data_hm36.py),下面具体说一下这个类:

        1 Fusion->perpare_data 

        先说perpare_data:

        下面这块代码,传入的dataset是3.1中加载的3d数据,folder_list当训练时选s1 s5  s6 s7 s8  测试的时候选s9 s11。

        具体的作用 1:通过world_to_camera把3d数据从世界坐标系转为相机坐标系;2:让2d的序列的长度和3d的序列长度保持一致; 3:数据标准化

        perpare_data return的是2dkeypoints

    def prepare_data(self, dataset, folder_list):
        for subject in folder_list:
            for action in dataset[subject].keys():
                anim = dataset[subject][action]

                positions_3d = []
                for cam in anim['cameras']:
                    pos_3d = world_to_camera(anim['positions'], R=cam['orientation'], t=cam['translation'])
                    pos_3d[:, 1:] -= pos_3d[:, :1] 
                    positions_3d.append(pos_3d)
                anim['positions_3d'] = positions_3d

        keypoints = np.load(self.root_path + 'data_2d_' + self.data_type + '_' + self.keypoints_name + '.npz',allow_pickle=True)
        keypoints_symmetry = keypoints['metadata'].item()['keypoints_symmetry']

        self.kps_left, self.kps_right = list(keypoints_symmetry[0]), list(keypoints_symmetry[1])
        self.joints_left, self.joints_right = list(dataset.skeleton().joints_left()), list(dataset.skeleton().joints_right())
        keypoints = keypoints['positions_2d'].item()

        for subject in folder_list:
            assert subject in keypoints, 'Subject {} is missing from the 2D detections dataset'.format(subject)
            for action in dataset[subject].keys():
                assert action in keypoints[
                    subject], 'Action {} of subject {} is missing from the 2D detections dataset'.format(action,
                                                                                                         subject)
                for cam_idx in range(len(keypoints[subject][action])):

                    mocap_length = dataset[subject][action]['positions_3d'][cam_idx].shape[0]
                    assert keypoints[subject][action][cam_idx].shape[0] >= mocap_length

                    if keypoints[subject][action][cam_idx].shape[0] > mocap_length:
                        keypoints[subject][action][cam_idx] = keypoints[subject][action][cam_idx][:mocap_length]

        for subject in keypoints.keys():
            for action in keypoints[subject]:
                for cam_idx, kps in enumerate(keypoints[subject][action]):
                    cam = dataset.cameras()[subject][cam_idx]
                    if self.crop_uv == 0:
                        kps[..., :2] = normalize_screen_coordinates(kps[..., :2], w=cam['res_w'], h=cam['res_h'])
                    keypoints[subject][action][cam_idx] = kps
        
        return keypoints

        2 Fusion->fetch         

        输出out_poses_3d、out_poses_2d、out_camera_params(是已经转换为相机坐标的数据)

        [subject,action,i(camera_id)]

    def fetch(self, dataset, subjects, subset=1, parse_3d_poses=True):
        out_poses_3d = {}
        out_poses_2d = {}
        out_camera_params = {}

        for subject in subjects:
            for action in self.keypoints[subject].keys():
                if self.action_filter is not None:
                    found = False
                    for a in self.action_filter:
                        if action.startswith(a):
                            found = True
                            break
                    if not found:
                        continue

                poses_2d = self.keypoints[subject][action]

                for i in range(len(poses_2d)):
                    out_poses_2d[(subject, action, i)] = poses_2d[i]

                if subject in dataset.cameras():
                    cams = dataset.cameras()[subject]
                    assert len(cams) == len(poses_2d), 'Camera count mismatch'
                    for i, cam in enumerate(cams):
                        if 'intrinsic' in cam:
                            out_camera_params[(subject, action, i)] = cam['intrinsic']

                if parse_3d_poses and 'positions_3d' in dataset[subject][action]:
                    poses_3d = dataset[subject][action]['positions_3d']
                    assert len(poses_3d) == len(poses_2d), 'Camera count mismatch'
                    for i in range(len(poses_3d)): 
                        out_poses_3d[(subject, action, i)] = poses_3d[i]

        if len(out_camera_params) == 0:
            out_camera_params = None
        if len(out_poses_3d) == 0:
            out_poses_3d = None

        stride = self.downsample
        if subset < 1:
            for key in out_poses_2d.keys():
                n_frames = int(round(len(out_poses_2d[key]) // stride * subset) * stride)
                start = deterministic_random(0, len(out_poses_2d[key]) - n_frames + 1, str(len(out_poses_2d[key])))
                out_poses_2d[key] = out_poses_2d[key][start:start + n_frames:stride]
                if out_poses_3d is not None:
                    out_poses_3d[key] = out_poses_3d[key][start:start + n_frames:stride]
        elif stride > 1:
            for key in out_poses_2d.keys():
                out_poses_2d[key] = out_poses_2d[key][::stride]
                if out_poses_3d is not None:
                    out_poses_3d[key] = out_poses_3d[key][::stride]

        return out_camera_params, out_poses_3d, out_poses_2d

        Fusion中用到ChunkedGenerator

        3 ChunkedGenerator

        用于生成数据块。它接受一些参数,如batch_size、cameras、poses_3d和poses_2d等,并根据这些参数生成数据块。这个类的主要功能是:

  1. 初始化时,根据输入的poses_2d和poses_3d计算数据块的数量(num_batches)。
  2. 提供next_pairs()方法,用于获取下一个数据块的索引对。
  3. 提供get_batch()方法,用于根据给定的索引对获取一个数据块。
  4. 根据需要,可以启用或禁用数据增强(augment)。
  5. 如果提供了相机信息(cameras),则还可以获取相机数据。
  6. 如果提供了3D姿态信息(poses_3d),则还可以获取3D姿态数据。
  7. 如果提供了左右关键点信息(kps_left和kps_right),则还可以获取关键点数据。
  8. 如果设置了endless参数,则可以无限循环生成数据块
class ChunkedGenerator:
    def __init__(self, batch_size, cameras, poses_3d, poses_2d,
                 chunk_length=1, pad=0, causal_shift=0,
                 shuffle=False, random_seed=1234,
                 augment=False, reverse_aug= False,kps_left=None, kps_right=None, joints_left=None, joints_right=None,
                 endless=False, out_all = False):
        assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d))
        assert cameras is None or len(cameras) == len(poses_2d)

        pairs = []
        self.saved_index = {}
        start_index = 0

        for key in poses_2d.keys():
            assert poses_3d is None or poses_3d[key].shape[0] == poses_2d[key].shape[0]
            n_chunks = (poses_2d[key].shape[0] + chunk_length - 1) // chunk_length  # 需要多少个chunks
            offset = (n_chunks * chunk_length - poses_2d[key].shape[0]) // 2
            bounds = np.arange(n_chunks + 1) * chunk_length - offset  # 每个chunk的起始和结束索引
            augment_vector = np.full(len(bounds - 1), False, dtype=bool)  # 用false填充
            reverse_augment_vector = np.full(len(bounds - 1), False, dtype=bool)
            keys = np.tile(np.array(key).reshape([1,3]),(len(bounds - 1),1))
            pairs += list(zip(keys, bounds[:-1], bounds[1:], augment_vector,reverse_augment_vector))
            if reverse_aug:
                pairs += list(zip(keys, bounds[:-1], bounds[1:], augment_vector, ~reverse_augment_vector))
            if augment:
                if reverse_aug:
                    pairs += list(zip(keys, bounds[:-1], bounds[1:], ~augment_vector,~reverse_augment_vector))
                else:
                    pairs += list(zip(keys, bounds[:-1], bounds[1:], ~augment_vector, reverse_augment_vector))

            end_index = start_index + poses_3d[key].shape[0]
            self.saved_index[key] = [start_index,end_index]
            start_index = start_index + poses_3d[key].shape[0]


        if cameras is not None:
            self.batch_cam = np.empty((batch_size, cameras[key].shape[-1]))

        if poses_3d is not None:
            self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[key].shape[-2], poses_3d[key].shape[-1]))
        self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[key].shape[-2], poses_2d[key].shape[-1]))

        self.num_batches = (len(pairs) + batch_size - 1) // batch_size
        self.batch_size = batch_size
        self.random = np.random.RandomState(random_seed)
        self.pairs = pairs
        self.shuffle = shuffle
        self.pad = pad
        self.causal_shift = causal_shift
        self.endless = endless
        self.state = None

        self.cameras = cameras
        if cameras is not None:
            self.cameras = cameras
        self.poses_3d = poses_3d
        self.poses_2d = poses_2d

        self.augment = augment
        self.kps_left = kps_left
        self.kps_right = kps_right
        self.joints_left = joints_left
        self.joints_right = joints_right
        self.out_all = out_all

    def num_frames(self):
        return self.num_batches * self.batch_size

    def random_state(self):
        return self.random

    def set_random_state(self, random):
        self.random = random

    def augment_enabled(self):
        return self.augment

    def next_pairs(self):
        if self.state is None:
            if self.shuffle:
                pairs = self.random.permutation(self.pairs)
            else:
                pairs = self.pairs
            return 0, pairs
        else:
            return self.state

    def get_batch(self, seq_i, start_3d, end_3d, flip, reverse):
        subject,action,cam_index = seq_i
        seq_name = (subject,action,int(cam_index))
        start_2d = start_3d - self.pad - self.causal_shift
        end_2d = end_3d + self.pad - self.causal_shift

        seq_2d = self.poses_2d[seq_name].copy()
        low_2d = max(start_2d, 0)
        high_2d = min(end_2d, seq_2d.shape[0])
        pad_left_2d = low_2d - start_2d
        pad_right_2d = end_2d - high_2d
        if pad_left_2d != 0 or pad_right_2d != 0:
            self.batch_2d = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), 'edge')
        else:
            self.batch_2d = seq_2d[low_2d:high_2d]

        if flip:
            self.batch_2d[ :, :, 0] *= -1
            self.batch_2d[ :, self.kps_left + self.kps_right] = self.batch_2d[ :,
                                                                  self.kps_right + self.kps_left]
        if reverse:
            self.batch_2d = self.batch_2d[::-1].copy()

        if self.poses_3d is not None:
            seq_3d = self.poses_3d[seq_name].copy()
            if self.out_all:
                low_3d = low_2d
                high_3d = high_2d
                pad_left_3d = pad_left_2d
                pad_right_3d = pad_right_2d
            else:
                low_3d = max(start_3d, 0)
                high_3d = min(end_3d, seq_3d.shape[0])
                pad_left_3d = low_3d - start_3d
                pad_right_3d = end_3d - high_3d
            if pad_left_3d != 0 or pad_right_3d != 0:
                self.batch_3d = np.pad(seq_3d[low_3d:high_3d],
                                          ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge')
            else:
                self.batch_3d = seq_3d[low_3d:high_3d]

            if flip:
                self.batch_3d[ :, :, 0] *= -1
                self.batch_3d[ :, self.joints_left + self.joints_right] = \
                    self.batch_3d[ :, self.joints_right + self.joints_left]
            if reverse:
                self.batch_3d = self.batch_3d[::-1].copy()

        if self.cameras is not None:
            self.batch_cam = self.cameras[seq_name].copy()
            if flip:
                self.batch_cam[ 2] *= -1
                self.batch_cam[ 7] *= -1

        if self.poses_3d is None and self.cameras is None:
            return None, None, self.batch_2d.copy(), action, subject, int(cam_index)
        elif self.poses_3d is not None and self.cameras is None:
            return np.zeros(9), self.batch_3d.copy(), self.batch_2d.copy(),action, subject, int(cam_index)
        elif self.poses_3d is None:
            return self.batch_cam, None, self.batch_2d.copy(),action, subject, int(cam_index)
        else:
            return self.batch_cam, self.batch_3d.copy(), self.batch_2d.copy(),action, subject, int(cam_index)

        

你可能感兴趣的:(计算机视觉)