- 百变背景:万相实验室AIGC电商图片可控生成技术
阿里妈妈技术
AIGC人工智能
✍本文作者:云芑、因尘、岁星、也鹿1.背景随着AI生成内容(AIGC)技术如Diffusion的飞速进展,现如今,大家已能够轻易地使用StableDiffusion(SD)[1]等文生图的模型或工具,将心中所想仅凭语言描述(prompt)即转化为具体图像。基于此,我们不禁思考:是否有可能进一步发展该技术,允许用户通过描述来为商品定制特定背景,从而协助商家快速且轻松地打造理想的商品图像?例如,为一个
- 复现:latent diffusion(LDM)stable diffusion
JokerSZ.
GenerationModelsstablediffusion人工智能深度学习生成模型
复现LDM已解决所有报错下载项目https://github.com/CompVis/latent-diffusion然后运行环境配置:condaenvcreate-fenvironment.yamlcondaactivateldm下载预先训练的权重:下载官方权重文件:mkdir-pmodels/ldm/text2img-large/wget-Omodels/ldm/text2img-large/
- Stable Diffusion绘画 | 文生图-高分辨率修复-放大算法使用推荐
肖遥Janic
StableDiffusion绘画stablediffusionAI作画人工智能aiAI绘画
放大算法分类image-20240719065510664使用推荐优先选择4x-UltraSharp需要下载后,放到SD安装目录\models\ESRGAN中,重载UI后选择使用下载地址:https://civitai.com/models/116225/4x-ultrasharp想生成一眼惊艳的锐度的画面,选择R-ESRGAN4x+不想过于锐化,最大限度保留画面细节,选择Lanczos二次元漫画
- llama_deploy
伊织code
#文档翻译llamallama_deployllamaindex
本文于240924翻译整理自:https://docs.llamaindex.ai/en/stable/module_guides/workflow/deployment/文章目录一、关于`llama_deploy`为什么使用`llama_deploy`?等等,`llama-agents`在哪里?二、入门1、安装2、高级部署3、部署核心系统4、部署工作流5、与部署交互6、部署嵌套工作流三、一个`l
- 【踩坑日记23】UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR
longii11
python人工智能
问题描述/mnt/lab/XXX/anaconda3/envs/diffusion_ddpo/lib/python3.10/site-packages/torch/nn/modules/conv.py:456:UserWarning:PlanfailedwithacudnnException:CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR:cudnnFinalize
- 【踩坑日记15】safetensors_rust.SafetensorError: Error while deserializing header: HeaderTooLarge
longii11
开发语言后端
问题描述加载stabilityai/stable-diffusion-xl-base-1.0模型时,出现问题。Errorwhiledeserializingheader:HeaderTooLargeFile"/home/XXX/code/dreambooth_lora/train_dreambooth_lora_sdxl_advanced.py",line1278,inmaintext_encod
- Stable Diffusion模型采样方法与参数配置详解(含步数及画风适配表)
Liudef06
StableDiffusion人工智能stablediffusionAI作画
StableDiffusion模型采样方法与参数配置详解(含步数及画风适配表)以下为当前主流采样方法的性能对比及参数配置建议,结合显存占用、生成速度、适用场景等维度分类总结:一、采样方法对比表采样方法推荐步数显存占用生成速度适用画风/场景核心特点DPM++2MKarras20-30高较慢通用型(2D/3D、写实/动漫)细节最优,综合性能强[1]Eulera15-25低快动漫、快速迭代速度快,易崩图
- Stable Diffusion模型Pony系列模型深度解析
Liudef06
StableDiffusion人工智能人工智能作画stablediffusionAI作画
StableDiffusion模型Pony系列模型深度解析一、技术架构与核心特性基于SDXL的深度优化Pony系列模型以SDXL为基础框架,通过针对二次元/动漫风格的微调,强化了在该领域的生成能力,同时保留了对写实场景的兼容性。其训练数据特别侧重于人物结构、动态姿势和风格化渲染,尤其在处理复杂肢体动作(如手部细节)方面表现出色。训练策略:采用混合精度训练(fp16/bf16)和分层权重调整技术
- vscode远程连接服务器离线安装
qq_张文
vscode服务器ide
需要安装两个文件,两个文件的下载地址如下:x86:https://vscode.download.prss.microsoft.com/dbazure/download/stable/${commit_id}/vscode-server-linux-x64.tar.gzhttps://vscode.download.prss.microsoft.com/dbazure/download/stabl
- #10 解决Stable Diffusion常见问题和错误
是阿牛啊
AIGCstablediffusion计算机视觉AIAIGC人工智能深度学习
文章目录前言1.环境配置错误问题描述解决方案2.模型加载失败问题描述解决方案3.图像生成质量差问题描述解决方案4.生成速度慢问题描述解决方案5.内存不足错误问题描述解决方案结论前言StableDiffusion是一种先进的AI图像生成工具,它允许用户基于文本描述生成高质量的图片。尽管其强大的功能为用户提供了无限的创造可能,但在使用过程中可能会遇到一些常见的问题和错误。本文将介绍这些问题及其解决方案
- docker离线安装及部署各类中间件(x86系统架构)
web13595609705
面试学习路线阿里巴巴docker中间件系统架构
前言:此文主要针对需要在x86内网服务器搭建系统的情况一、docker离线安装1、下载docker镜像https://download.docker.com/linux/static/stable/x86_64/版本:docker-23.0.6.tgz2、将docker-23.0.6.tgz文件上传到服务器上面,这里放在了/home下3、创建docker.service文件#进入/etc/syst
- 【本地化部署Stable Diffusion WebUI(MACOS安装)】
大漠新人
stablediffusionmacosAI作画
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、StableDiffusionWebUI适配三类芯片二、安装1.安装git、conda等2.选定目录及下载Github远程仓库文件3.创建conda虚拟环境4.安装依赖pip速度慢需添加国内pip源5.运行6.问题处理缺openai模块等手动gitclone类似的v1-5-pruned-emaonly.safetens
- docker部署stable-diffusion-webui
特制蛋炒饭
dockerstablediffusion容器
大模型弄好了,想着玩玩stable-diffusion-webui,结果折腾了几天无果,最后使用大佬的docker镜像弄好了。Ubuntu20.4docker运行stablediffusionwebui_siutin/stable-diffusion-webui-docker-CSDN博客以下作为备忘:配置nvidia-docker2仓库:curl-s-Lhttps://nvidia.github
- Stable Diffusion API 调用实战:详细教程
2301_79125431
java
后端开发工程师-抖音电商(24届校招)春招提前批23届试用期被裁,该怎么办日常实习offer选择:字节vs英特尔看到牛客之旅勾起的一点点“秋招总结”小鹏自驾测开二面华为光产品线华为南京数通行测图形题遇到四五次了,到底选啥呀数分实习面经合集(PayPal、爱奇艺、B站、蔚来、滴滴)联影,联通,比亚迪,军科院选哪个安慰一下被华子创到的uu们byd毁约兄弟们,面试止不住的紧张怎么办啊黑色星期五!游戏行业
- [MD] AG stable
やっはろ
人工智能
当然,以下是A-stable和G-stable的详细定义:A-stable(A-稳定)A-stable是数值方法稳定性的一种分类,主要用于分析求解常微分方程初值问题的数值方法。一个数值方法被称为A-stable,如果它满足以下条件:对于所有的步长hhh和所有的λ\lambdaλ满足Re(λ)≤0\text{Re}(\lambda)\leq0Re(λ)≤0,数值方法产生的数值解是稳定的。这里的λ\l
- AI绘画工具Stable Diffusion+ComfyUI的配置
AIGC龙哥
AI作画stablediffusiongpt-3文心一言DALL·E2
ComfyUI是一个基于图形用户界面的开源工具,用于搭建和运行复杂的图像生成和处理工作流。它主要围绕使用StableDiffusion模型来生成高质量的图像。这种工具通常允许用户通过拖放不同的模块或节点,定义数据处理和生成流程,然后通过这些流程生成图像。ComfyUI的核心功能包括图形化工作流设计:用户可以通过连接不同的模块或节点(例如,模型加载、图像处理、生成等)来构建自定义的图像生成流程。支持
- Stable Diffusion在中国的生态分析报告
Liudef06
stablediffusion
一、技术演进与产业布局核心技术突破国内企业已深度参与StableDiffusion生态,例如北京灵动天地于2024年8月申请了模型融合专利,通过动态权重插值技术提升生成效果。SD3系列模型(参数规模800M-8B)在中文场景下优化了文本渲染能力,支持1024x1024分辨率图像生成,显存占用显著降低。开源社区中,SDXL0.9版本通过简化提示词需求,实现与MidjourneyV5.2的竞争
- 腾讯混元文生图大模型(Hunyuan-DiT)与Stable Diffusion(SD)对比分析
Liudef06
StableDiffusionstablediffusion
腾讯混元文生图大模型(Hunyuan-DiT)与StableDiffusion(SD)对比分析腾讯混元文生图大模型(Hunyuan-DiT)与StableDiffusion(SD)作为当前文生图领域的两大代表模型,各自在技术架构、应用场景和生态支持上展现出了独特的优势。以下是对这两个模型关键维度的对比分析:1.技术架构与性能维度腾讯混元(Hunyuan-DiT)StableDiffusion(SD
- Stable Diffusion(SD)系列模型及关联算法深度解析
Liudef06
StableDiffusionstablediffusion算法
一、基础模型架构演进SDv1.5核心架构:基于LatentDiffusionModel(LDM),通过VAE将图像压缩至潜空间进行扩散训练,支持512x512分辨率生成,兼容二次元与写实风格混合创作12。训练数据:使用LAION-5B数据集过滤后的子集,文本编码器为CLIPViT-L/1434。局限性:对复杂光影和材质的细节刻画能力较弱,高分辨率生成需依赖外部放大工具28。
- Stable Diffusion教程:提示词(模型、插件、安装包可分享)
会AIGC的小孩
AI作画ai绘画人工智能stablediffusion人工智能作画
什么是提示词文章提到的模型、插件、安装包都可分享,需要的小伙伴文末领取!你可能没写过提示词,但是一定听说过“提示词”这几个字,也大概能知道它的重要性。没听说过也没关系,下面我就带你认识认识。提示词就是我们给AI模型下发的指令。提示词写对了,AI才能输出相应的结果,提示词写的越好,AI输出的内容质量越高、越贴近你的需求。这有点像程序代码,代码逻辑写对了,程序才能正常运行,代码写的越好,程序运行时发生
- 【Stable Diffusion】AnimatedDiff--AI动画 插件使用技巧分享;文生视频、图生视频、AI生成视频工具;
乘凉~
人工智能应用stablediffusion人工智能音视频
本专栏主要记录人工智能的应用方面的内容,包括chatGPT、DeepSeek、AI绘画等等;在当今AI的热潮下,不学习AI,就要被AI淘汰;所以欢迎小伙伴加入本专栏和我一起探索AI的应用,通过AI来帮助自己提升生产力;本文的目标就是让每一个读者,都能学会并掌握AnimateDiff的使用;成功用它来生成你想要的视频。AnimateDiff是StableDiffusion的一个插件,借助它,你可以实
- Stable diffusion 3.5本地运行环境配置记录
寸先生的牛马庄园
扩散模型stablediffusion
1.环境配置创建虚环境condacreate-nsd3.5python=3.10Pytorch(>2.0)condainstallpytorch==2.2.2torchvision==0.17.2torchaudio==2.2.2pytorch-cuda=12.1-cpytorch-cnvidiaJupyter能使用Anaconda虚环境condainstallipykernelpython-mi
- Farm3D- Learning Articulated 3D Animals by Distilling 2D Diffusion论文笔记
Im Bug
3d论文阅读
Farm3D:LearningArticulated3DAnimalsbyDistilling2DDiffusion1.Introduction最近的研究DreamFusion表明,可以通过text-imagegenerator提取高质量的三维模型,尽管该生成模型并未经过三维训练,但它仍然包含足够的信息以恢复三维形状。在本文中,展示了通过文本-图像生成模型可以获取更多信息,并获得关节模型化的三维对
- 《AI 大模型 ChatGPT 的传奇》
武昌库里写JAVA
面试题汇总与解析课程设计springbootvue.js算法数据结构
《AI大模型ChatGPT的传奇》——段方某世界100强企业大数据/AI总设计师教授北京大学博士后助理:1三6三二四61四五41AI大模型的概念和特点1.1什么是”大模型、多模态“?1.2大模型带来了什么?1.3大模型为什么能产生质变?1.4算法层面的跃升1.4.1RNN到transformor1.4.2扩散模型diffusion1.4.3跨模态的CLIP框架1.5AIGC的耀眼成果1.5.1AI
- VQ-Diffusion 深度解析与实战指南
晏灵昀Odette
VQ-Diffusion深度解析与实战指南VQ-Diffusion项目地址:https://gitcode.com/gh_mirrors/vqd/VQ-Diffusion1.项目介绍VQ-Diffusion是一个用于文本到图像合成的深度学习模型,基于矢量量化变分自编码器(VQ-VAE)和去噪扩散概率模型(DenoisingDiffusionProbabilisticModel)。该模型通过将DDP
- 一行指令自动搭建AI绘画:stable-diffusion-webui_v1.3.2
954L
AI前沿技术dockerstablediffusionlinux
Demo效果一、前言本文使用docker进行部署,环境等所有依赖全部整合完毕(版本:v1.3.2)容器内默认已支持(无需额外配置):xformers+controlnet支持自定义启动参数,本文示例为开放api接口供外部业务调用,并已解决API方式下Lora不生效的BUG;开启方式文末细说首次启动下载必要依赖较耗时,容器已配置国内代理加速,预计5分钟内完成容器内自带官方的模型:v1-5-prune
- stable diffusion 大模型及lora等下载安装使用教程及项目目录说明
代码简单说
AIGC实践与人工智能stablediffusion
首先说明,stablediffusion大模型并非controlNet中使用的模型,这两者有根本的区别,请仔细区分。国内可下载模型的站点:哩布哩布https://liblib.ai模型分为几类,下载的时候看清楚类型,都会标记在模型的显眼位置。Checkpoint模型存放位置:SD主程序目录位置/models/Stable-diffusionVAE模型存放位置:SD主程序目录位置/models/VA
- ComfyUI与其他Stable diffusion AI绘图应用要如何共享绘图模型?
chatblog
AIComfyUIstablediffusion人工智能AIGCaiAI作画
无论是下载的第三方安装包还是官方的整合包,你在对应ComfyUI的安装目录里都可以找到extra_model_paths.yaml.example这个文件,路径如下ComfyUI_windows_portable├──ComfyUI│├──extra_model_paths.yaml.example//此文件为配置文件│└──...省略其它文件└──...省略其它文件找到以上文件后修改文件名ext
- 零成本、高收益!AI绘画助你轻松开启副业赚钱新时代!
AI设计酷卡
AI作画人工智能AIGCstablediffusionmidjourney
StableDiffusion,是一款AI艺术生成器,成为追求额外收入的个人的一条有前景的途径。当我在手机上浏览StableDiffusion的Subreddit时,看到了一篇帖子询问他们如何使用StableDiffusion。这篇帖子展示了AI生成的艺术品的打印件,并将它们作为钥匙扣或纪念品出售。这个创新的概念吸引了我,因为其中所蕴含的创造力。我查看了评论,不用说,我对一些人如何利用Stable
- 使用Diffusion Models进行图像超分辩重建
沉迷单车的追风少年
DiffusionModels与深度学习人工智能计算机视觉超分辨率重建AIGC深度学习
DiffusionModels专栏文章汇总:入门与实战前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR图像将变得与其HR对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用DiffusionModels进行图像超分辩重建任务。目录贡献概述动机方法详解模型训练论文贡献概述这项研究提出了一种基于扩散逆过程的新图像
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本