Flink读取Kafka数据批量写入ES(elasticsearch)

Flink实时消费kafka数据,数据经过处理,富化、清洗等操作,写入ES。在流式计算中,此场景十分常见。
本文采用ES的批量操作BulkProcessor方式,此方式使用的是TransportClient,基于Tcp协议;而rest方式采用的是restClient,基于http协议,并不能保证结果的准确性。
参考

一、依赖准备:

主要依赖:


    org.elasticsearch
    elasticsearch
    ${elasticsearch.version}


    org.elasticsearch.client
    transport
    ${elasticsearch.version}


    org.apache.flink
    flink-streaming-java_2.11
    ${flink.version}


    org.apache.flink
    flink-connector-kafka_2.11
    ${flink.version}

主函数:

```java
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.qianxin.ida.enrich.ElasticsearchSink;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Arrays;
import java.util.Properties;

@Slf4j
public class KafkaToEs {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        try {
            env.enableCheckpointing(10000);
            //topic列表
            String[] topics = new String[]{"topic1", "topic2"};
            //多topic情况
            Arrays.stream(topics).forEach(topic -> {
                SingleOutputStreamOperator dateStream = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(),
                        new Properties()).setStartFromLatest())
                        .map(new MapFunction() {
                            //具体数据清洗操作
                            public JSONObject map(String value) throws Exception {
                                JSONObject jsonObject = new JSONObject();
                                jsonObject = JSON.parseObject(value);
                                return jsonObject;
                            }
                        });
                dateStream.print();
                //自定义sink
                dateStream.addSink(new ElasticsearchSink());

            });
            env.execute("kafka2es");
        } catch (Exception e) {
            log.error("kafka2es fail " + e.getMessage());
        }
    }
}

ElasticsearchSink函数:

package com.qianxin.ida.enrich;

import com.alibaba.fastjson.JSONObject;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.elasticsearch.action.bulk.BackoffPolicy;
import org.elasticsearch.action.bulk.BulkProcessor;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.common.unit.ByteSizeUnit;
import org.elasticsearch.common.unit.ByteSizeValue;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.transport.client.PreBuiltTransportClient;

import java.net.InetAddress;

import static com.qianxin.ida.utils.Constants.INDEX_SUFFIX;

@Slf4j
public class ElasticsearchSink extends RichSinkFunction implements SinkFunction {
 
    private static BulkProcessor bulkProcessor = null;

    @Override
    public void open(Configuration parameters) throws Exception {
		//BulkProcessor是一个线程安全的批量处理类,允许方便地设置 刷新 一个新的批量请求 
        Settings settings = Settings.builder()
                .put("cluster.name", "elasticsearch")
                .put("client.transport.sniff", false)
                .build();
        PreBuiltTransportClient preBuiltTransportClient = new PreBuiltTransportClient(settings);
        TransportClient client = preBuiltTransportClient.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        BulkProcessor.Listener listener = buildListener();
        BulkProcessor.Builder bulk = BulkProcessor.builder(client, listener);
        //根据当前添加的操作数设置刷新新批量请求的时间(默认值为1000,-1禁用)
        bulk.setBulkActions(Property.getIntValue("bulk_actions"));
        //根据当前添加的操作大小设置刷新新批量请求的时间(默认为5Mb,-1禁用)
        bulk.setBulkSize(new ByteSizeValue(Property.getLongValue("bulk_size"), ByteSizeUnit.MB));
        //设置允许执行的并发请求数(默认为1,0仅允许执行单个请求)
        bulk.setConcurrentRequests(Property.getIntValue("concurrent_request"));
        //设置一个刷新间隔,如果间隔过去,刷新任何待处理的批量请求(默认为未设置)
        bulk.setFlushInterval(TimeValue.timeValueSeconds(Property.getLongValue("flush_interval")));
        //设置一个恒定的后退策略,最初等待1秒钟,最多重试3次
        bulk.setBackoffPolicy(BackoffPolicy
                .constantBackoff(TimeValue.timeValueSeconds(Property.getLongValue("time_wait")),
                        Property.getIntValue("retry_times")));
        bulkProcessor = bulk.build();
        super.open(parameters);
    }

    private static BulkProcessor.Listener buildListener() throws InterruptedException {
        BulkProcessor.Listener listener = new BulkProcessor.Listener() {
            @Override
            public void beforeBulk(long l, BulkRequest bulkRequest) {
            }
            @Override
            public void afterBulk(long l, BulkRequest bulkRequest, BulkResponse bulkResponse) {
            }
            @Override
            public void afterBulk(long l, BulkRequest bulkRequest, Throwable throwable) {
            }
        };
        return listener;
    }

    @Override
    public void invoke(JSONObject jsonObject, Context context) throws Exception {
        try {
            String topic = jsonObject.getString("topic");
            String index = "index_";
            bulkProcessor.add(new IndexRequest(index)
                    .type(topic)
                    .source(jsonObject));
        } catch (Exception e) {
            log.error("sink 出错 {{}},消息是{{}}", e.getMessage(), jsonObject);
        }
    }

}

你可能感兴趣的:(java,java,后端)