- 小科普《DNS服务器》
Hum8le
服务器运维
DNS服务器详解1.定义与核心作用DNS(域名系统)服务器是互联网的核心基础设施,负责将人类可读的域名(如www.example.com)转换为机器可识别的IP地址(如192.0.2.1),从而实现设备间的通信。其核心功能包括:域名解析:将域名转换为IP地址,简化用户访问网站的流程。负载均衡:通过将同一域名映射到多个IP地址,分配流量以提升服务稳定性和性能。缓存加速:存储近期查询结果,减少重复解析
- 在忙碌的生活中,沉浸在宁静中冥想音乐
qq_39382822
生活软件需求手机音视频
在忙碌的生活中,给自己一点时间,放松身心,沉浸在宁静的音乐中,感受内心的平静。今天,就让我们来认识一款能帮你轻松进入冥想状态的神奇应用——冥想音乐MeditationMusic。软件介绍冥想音乐MeditationMusic是你日常瑜伽练习、休息时光以及睡前的贴心伴侣。它能为你模拟大自然的各种场景声音,比如海边的轻浪拍岸、森林中的鸟语虫鸣、黄昏时的微风轻拂,帮助你更好地进行冥想,自由地放松身心,仿
- [模拟实现]unique_ptr、shared_ptr智能指针--C++版本的代码实现
北顾南栀倾寒
c++开发语言
一、unique_ptrunique_ptr是在auto_ptr的基础之上,解决了多个智能指针同时指向一个对象,发生管理权转移,只有一个智能指针指向了对象,其他的都是管理的空对象的行为。这里的多个智能指针指向同一个对象是通过拷贝构造或者赋值重载实现的,unique_ptr的解决办法就是将这两种方式禁用掉,不让其进行这类操作,保证了同一时间只有一个智能指针指向该对象。1.构造函数与析构函数std::
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- 【Linux】Linux下调试器gdb的使用
安 度 因
Linuxlinux运维服务器测试工具调试
作者主页:@安度因学习社区:StackFrame专栏链接:Linux文章目录一、前言二、铺垫三、指令集和使用1、指令集2、演示四、结语如果无聊的话,就来逛逛我的博客栈吧!一、前言前几篇Linux博客中,我们分别学习了与编辑、编译、自动化构建代码、上传代码的工具。而今天,我们将学习最后一个工具——Linux下的调试器gdb
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 深入理解正则表达式:语法全解析
谢兴豪
本文还有配套的精品资源,点击获取简介:正则表达式是一种用于文本匹配的模式,广泛应用在文本处理、数据验证等领域。本文将全面探讨正则表达式的语法细节,包括字符匹配、元字符、字符类、量词、分组与反向引用、选择与否定、位置锚点、预定义字符集、模式修饰符、回溯控制以及正向先行断言和正向后行断言。掌握这些知识有助于提高编程效率和代码质量。1.正则表达式简介正则表达式是IT行业中的“瑞士军刀”,它们在文本处理、
- PTA基础编程集7-20 打印九九口诀表 (15分)
ohhTechSoon
PTA基础编程集
7-20打印九九口诀表(15分)下面是一个完整的下三角九九口诀表:11=112=222=413=323=633=914=424=834=1244=1615=525=1035=1545=2055=2516=626=1236=1846=2456=3066=3617=727=1437=2147=2857=3567=4277=4918=828=1638=2448=3258=4068=4878=5688=6
- 解析:浏览器事件冒泡及事件捕获
C860
浏览器浏览器
今天的效率有点奇葩,说高吧,一个上午做了不少事。说低吧,因为一个分布式的算法花了我不少时间,终于有点头绪。估计明天会写一篇文章来讲述一下自己的看法。而今天,还是回到前端。今天来说说事件冒泡和事件捕获。首先肯定是概念:什么是事件冒泡?什么是事件捕获?简单地说,事件冒泡和事件捕获都是一种事件传递的机制。这种机制可以使事件在不同级的元素间传递。事件冒泡是从事件触发的源节点,向父节点传递,直到到达最顶节点
- RabbitMQ
z小天才b
RabbitMQrabbitmq分布式
一、MQ相关的概念1.1、MQ的基本概念什么是MQMQ(MessageQueue,消息队列)是一种应用程序对应用程序的通信方法。应用程序通过写入和检索出入队列的针对性消息来通信,这些消息可以存储在内存或磁盘中。消息队列允许应用程序独立地运行,并以可靠的方式相互通信。为啥要用MQ解耦:允许系统独立开发、部署和运行,减少系统间的直接依赖异步处理:非阻塞操作,请求处理与响应分离削峰填谷:缓冲突发请求,防
- FDTD:基于Python的电磁场模拟开源库教程
邱进斌Olivia
FDTD:基于Python的电磁场模拟开源库教程项目地址:https://gitcode.com/gh_mirrors/fd/fdtd项目介绍FDTD(Finite-DifferenceTime-Domain)是一个致力于电磁场仿真的开源项目,由flaport维护。此项目基于Python语言,提供了一套灵活且强大的工具集,用于解决各种电磁学问题,包括但不限于光学、射频以及微波工程中的传播、散射等问
- NLU-预训练模型-2018:Bert(二)【“Masked LM”缺点:①预训练与微调不一致;②忽略了掩码位置间的依赖关系】【复杂度:O(n^2·d);n:输入序列长度(规定最长512)】
u013250861
#NLP/词向量_预训练模型bert人工智能深度学习
五、BERT中的词嵌入1、为什么要使用BERT的嵌入使用BERT从文本数据中提取特征,即单词和句子的嵌入向量。我们可以用这些词和句子的嵌入向量做什么?首先,这些嵌入对于关键字/搜索扩展、语义搜索和信息检索非常有用。例如,如果你希望将客户的问题或搜索与已经回答的问题或文档化的搜索相匹配,这些表示将帮助准确的检索匹配客户意图和上下文含义的结果,即使没有关键字或短语重叠。其次,或许更重要的是,这些向量被
- 大模型微调
归一码字
人工智能
文章目录前言一、使用的库二、数据预处理1.引入库2.读入数据3.对数据进行预处理4.转换为json格式文件三,使用算子分析数据并进行数据处理四,划分训练集和测试集五,编写训练脚本开始训练六,进行模型推理人工评估总结前言这是使用知乎评论进行模型微调,让模型输出更加通畅接近人的使用语言一、使用的库modelscope:提供模型、数据集下载能力data-juicer:提供数据集处理能力ms-swift:
- 部分标签数据集生成与过滤特定标签方法
阳光明媚大男孩
机器学习人工智能
完整代码总结这段代码的目的是通过构建一个部分标签学习(PartialLabelLearning,PLL)框架来生成一个包含部分标签的数据集,并且支持根据给定的标签列表对数据集进行筛选和过滤。代码包含了多个类和函数,主要分为以下几部分:数据预处理与加载:使用PyTorch和torchvision来加载CIFAR-10数据集,并对其进行标准化处理。部分标签数据集的生成:为每个样本生成多个候选标签,并模
- 查看 CUDA cudnn 版本 查看Navicat GPU版本
FergusJ
备份python开发语言
查看显卡型号:lspci|grepVGA(lspci是linux查看硬件信息的命令),屏幕会打印出主机的集显几独显信息python中查看显卡型号fromtensorflow.python.clientimportdevice_libdevice_lib.list_local_devices()
- 深入解析 .NET 中的依赖项加载机制:原理、实现与最佳实践
江沉晚呤时
Netcore前端数据库c#.netcore
在现代应用程序的开发中,依赖项管理与加载是非常重要的组成部分,尤其是在大型系统中,如何高效地加载和管理依赖项可以极大地影响应用程序的性能、可维护性和扩展性。在.NET中,依赖项加载不仅涉及静态依赖的管理,还包括动态加载组件和程序集的能力。本文将详细讲解.NET中的依赖项加载机制,覆盖从静态依赖注入到动态加载的所有重要概念。1.依赖项加载的基本概念1.1依赖项与依赖注入(DI)依赖项是一个对象在其生
- Postman高级功能深度解析:Mock Server与自动化监控——构建高效API测试与监控体系
测试渣
测试工具postman
引言:Postman在API开发中的核心价值在数字化时代,API(应用程序编程接口)已成为系统间交互的“神经网络”,其质量直接影响用户体验与业务连续性。然而,传统API测试面临两大挑战:开发阶段依赖:前端与后端团队需同步开发,导致进度延迟;测试环境复杂:生产数据敏感、测试场景覆盖不全、性能压力模拟困难。Postman作为全球领先的API开发与测试工具,通过其MockServer与自动化监控两大核心
- MDX语言的软件工程
苏墨瀚
包罗万象golang开发语言后端
MDX语言的软件工程引言在现代软件开发中,技术的进步不断推动着开发流程的变化与优化。MDX(MultidimensionalExpressions)语言作为一种用于查询和操作多维数据集的表达式语言,已在数据分析、商业智能等领域得到了广泛应用。本文将探讨MDX语言在软件工程中的应用,包括其基本概念、工作原理、最佳实践以及在数据分析系统中的具体案例。1.MDX语言概述MDX最初由微软开发,通常用于访问
- Django ORM自定义排序的实用示例
上官美丽
技术分享django数据库sqlite
在使用Django进行开发时,ORM(对象关系映射)是一个非常强大的工具。它让我们可以用Python代码直接操作数据库,而不需要写SQL语句。当我们需要对数据进行排序时,DjangoORM同样提供了丰富的功能。今天,我们就来聊聊如何在Django中实现自定义排序,帮助你更好地管理和展示数据!理解DjangoORM的排序功能DjangoORM提供了order_by()方法,允许我们对查询集进行排序。
- dfs(二十二)78. 子集
曾几何时`
#DFS深度优先算法数据结构
78.子集给你一个整数数组nums,数组中的元素互不相同。返回该数组所有可能的(幂集)。解集不能包含重复的子集。你可以按任意顺序返回解集。示例1:输入:nums=[1,2,3]输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]示例2:输入:nums=[0]输出:[[],[0]]提示:1>res;vectorpath;vector>subsets(vector
- 探索 Tavily Search API:为 AI 提供快速准确的搜索结果
nseejrukjhad
人工智能python开发语言
引言在当今的技术时代,AI代理(如大型语言模型)日益需要实时、准确和事实性强的搜索结果。TavilySearchAPI就是为此而生的。这篇文章将介绍如何将TavilySearchAPI集成为一个检索器,使开发者可以在应用中快速获取所需信息。此外,我们将讨论这一集成过程中的挑战及其解决方案。主要内容1.TavilySearchAPI简介TavilySearchAPI是一个专门为AI代理设计的搜索引擎
- Modbus RTU
Curryᯤ
网络
1.Modbus简介Modbus是应用于电子领域上的一种通用协议分为三种:Modbus-RTU:二进制串行通信协议,适用于大多数场景。Modbus-ASCLL:采用ASCLL编码的串行通信协议,适用于小数据量传输,但效率较低。Modbus-TCP:基于以太网的传输协议,利用TCP/IP协议网络实现设备间的高速数据交换。2.Modbus协议传输格式在发送格式中:MODBUS地址是从机的设备地址,一般
- 车辆检测与识别:车辆分类_(9).车辆分类模型的评估与优化
zhubeibei168
机器人(二)分类数据挖掘人工智能计算机视觉机器学习视频监控
车辆分类模型的评估与优化在车辆检测与识别领域,车辆分类模型的评估与优化是确保模型性能和可靠性的关键步骤。本节将详细介绍如何评估车辆分类模型的性能,并提供一些优化技术,以提高模型的准确性和效率。模型评估指标1.准确率(Accuracy)准确率是最直观的评估指标,表示分类器正确分类的样本占总样本的比例。然而,在不平衡数据集上,准确率可能具有误导性。fromsklearn.metricsimportac
- 云原生分布式存储:数据洪流中的时空折叠艺术
桂月二二
云原生分布式
引言:数据维度战争的新防线蚂蚁集团存储集群达500EB规模,Netflix每日处理3PB视频数据。AWSS3支持每秒1.5亿次请求,字节跳动对象存储延迟低至12ms。IDC预测2026年全球存储开销达亿,沃尔玛每秒处理万笔交易日志,沙特阿美地震勘探数据集超。微软冷存单价降至0.00099/GB·月,中国天眼FAST每秒生成160GB射电数据,Twitter使用Ambry实现250万IOPS。Gar
- Maven中dependency标签参数
lgily-1225
日常积累mavenjava后端
Maven中dependency标签参数如下:一、type有时候我们引入某一个依赖时,必须指定type,这是因为用于匹配dependency引用和dependencyManagement部分的最小信息集实际上是{groupId,artifactId,type,classifier}。在很多情况下,这些依赖关系将引用没有classifier的jar依赖。这允许我们将标识设置为{groupId,art
- 「Python数据分析」Pandas基础,筛选数据利器:布尔索引
奕澄羽邦
python数据分析pandas
我们在处理数据的时候,数据筛选是一个重要的过程。利用布尔索引,我们可以选择需要的数据区间。布尔索引,是利用各种不等式,以及与或非操作,来对数据区间进行选择。在pandas中,与操作,对应的是&这个符号,表示选取两个数据集重合的部分。或操作,对应的是|这个符号,表示选择两个数据集中,只要在一个数据集中出现的部分。非操作,对应的是~这个符号,表示选取一个数据集中,相反的部分。我们下面通过具体的例子,来
- STM32 SPI总线驱动CH376T实现U盘/TF卡读写全解析—SPI通信、命令集与文件操作(下) | 零基础入门STM32第七十五步
触角01010001
STM32入门教程(100步)stm32驱动开发单片机嵌入式硬件物联网
主题内容教学目的/扩展视频CH376芯片重点课程电路原理,跳线设置,切换U盘和TF卡。手册分析。驱动程序。调用常用函数。会调用现有函数操作U盘即可。师从洋桃电子,杜洋老师文章目录1.引言2.硬件连接3.驱动程序分析3.1SPI通信机制4.CH376命令集详解4.1常用命令表4.2命令使用示例5.初始化程序解析6.数据读写函数实现6.1写数据到文件6.2从文件读取数据7.应用示例:U盘状态检测8.扩
- 解锁智慧养老新可能,全面提升养老生活质量
weixin_45819535
生活
在老龄化浪潮席卷全球的今天,如何让老年人的生活更加安全、便捷、丰富多彩,成为了我们共同的责任与追求。辉视智慧养老方案,正是这样一款以老年人需求为核心,集信息查询、活动参与、紧急对讲与安全保障于一体的智慧养老解决方案。它如同一道温暖的光,照亮了老年人的养老生活,让关爱之声随时在他们身边响起。一、智慧生活,一触即达辉视智慧养老方案以直观简洁的界面,将社区各类服务信息呈现于老年人眼前。从营养均衡的餐饮选
- 【Dive Into Stable Diffusion v3.5】1:开源项目正式发布——深入探索SDv3.5模型全参/LoRA/RLHF训练
Donvink
大模型#AIGCstablediffusionAIGC人工智能机器学习深度学习
目录1引言2项目简介3快速上手3.1下载代码3.2环境配置3.3项目结构3.4下载模型与数据集3.5运行指令3.6核心参数说明3.6.1通用参数3.6.2优化器/学习率3.6.3数据相关4结语1引言在人工智能和机器学习领域,生成模型的应用越来越广泛。StableDiffusion作为其中的佼佼者,因其强大的图像生成能力而备受关注。今天,我的开源项目DiveIntoStableDiffusionv3
- oracle基础知识之表的集合运算
数字天下
oracle数据库
一个查询就是一个集合:查询的结果集一条记录就是一个元素。集合运算是用来把两个或多个查询的结果集做并、交、查的集合运算,包含集合运算的查询称为复合查询。*Select基本语法如下:SELECTcolumn_1,column_2,…FROMtable_nameWHEREsearch_conditionORDERBYcolumn_1,column_2;2.常用集合运算方式的应用(1)联合运算:联合运算实
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc