- When Large Language Models Meet Speech: A Survey on Integration Approaches
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
主要内容研究背景:大语言模型(LLMs)在自然语言处理领域取得显著进展,其与语音的融合具有广泛应用前景,但缺乏相关集成方法的综述。文章将语音与LLMs集成方法分为基于文本、基于潜在表示和基于音频令牌三大类。集成方法基于文本的集成:通过级联集成、LLM重打分和LLM生成式错误纠正等方式,利用文本作为LLMs的输入和输出,处理语音相关任务,但存在信息损失和准确性与多样性平衡的问题。基于潜在表示的集成:
- 大模型学习终极指南:从新手到专家的必经之路,全网最详尽解析,你敢挑战吗?
大模型入门教程
学习人工智能AI大模型大模型学习大模型教程AI大模型
随着人工智能技术的飞速发展,大模型(Large-ScaleModels)已经成为推动自然语言处理(NLP)、计算机视觉(CV)等领域进步的关键因素。本文将为您详细介绍从零开始学习大模型直至成为专家的全过程,包括所需掌握的知识点、学习资源以及实践建议等。无论您是初学者还是有一定基础的专业人士,都能从中获得有价值的指导。一、基础知识准备在开始学习大模型之前,需要先掌握一些基础知识,这些知识将为后续的学
- OCR识别常见开源库
yxfamyself
计算机视觉opencv
OCR(OpticalCharacterRecognition,光学字符识别)技术是一种将印刷体或手写文字转化为可编辑文本的技术。亦即将图像中的文字进行识别,并以文本的形式返回。做OCR有很多库可以使用。免费开源库有:Tesseract,PaddleOCR。商业付费OCR有:腾讯云OCR,阿里云OCR。下面分别介绍。准确识别的前提是找到正确的字体进行训练,字体很重要,要覆盖所有识别的场景。Tess
- 大模型Agent 和 RAG 的关系
大数据追光猿
大模型语言模型人工智能学习方法transformer
Agent和RAG(Retrieval-AugmentedGeneration)是两种在自然语言处理(NLP)和人工智能领域中广泛使用的技术,它们在功能、目标和实现方式上既有区别又有联系。以下是它们的关系及其协同作用的详细分析。1.Agent和RAG的定义(1)Agent定义:Agent是一种智能体,能够感知环境并采取行动以完成特定任务。在NLP领域,Agent通常指一个基于大语言模型(LLM)的
- AtCoder备赛冲刺必刷题(C++) | 洛谷 AT_abc396_a Triple Four
热爱编程的通信人
c++算法开发语言
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺必刷题(C++)|汇总【题目来源】洛谷:AT_abc396_a[ABC396A]
- QHDBO基于量子计算和多策略融合的蜣螂优化算法
算法小狂人
算法改进智能优化算法量子计算算法
2.DBO基本的蜣螂算法通过模拟蜣螂在自然界中的四种行为(滚动、产卵、觅食和偷窃)来执行种群位置更新。2.1滚动蜣螂在自然界中,蜣螂必须通过太阳导航,使其球滚动的路线尽可能直线。方程(1)用于原始论文中更新滚动蜣螂的位置:xi(t+1)=xi(t)+α⋅k⋅xi(t−1)+b⋅Δx(1)x_i(t+1)=x_i(t)+\alpha\cdotk\cdotx_i(t-1)+b\cdot\Deltax\
- 《有限与无限的游戏》
晴空排云
《有限与无限的游戏》游戏哲学博弈论其他
这是一本哲学方面的书1,以“游戏”为主线,讲解了世界、时间、社会、文化、权力、语言、性、疾病、死亡、战争、自然、机器、宗教、神话等重要主题。在哲学家眼中,游戏是一个没有感情色彩的词,任何一个有限或无限的过程都可以看做是游戏。所以,人生是游戏,爱情也是游戏,不同的只是游戏参与者的“游戏观”。今天把这本书读完了。虽然有时读的似懂非懂,但每次拿起它读的时候心灵深处总有那么一种震撼,一种醍醐灌顶的感觉。这
- 鸿蒙相机开发实战:从设备适配到性能调优 —— 我的 ArkTS 录像功能落地手记(API 15)
harmonyos
引言:为什么我要写这份开发指南?作为一名老技术,最近特别喜欢研究鸿蒙相机功能,而且目前已经更新到API15了,那么咱们更要好好研究一下。而且从手持云台到车载记录仪,每个项目都面临独特挑战:车载场景的高温稳定性、可穿戴设备的低功耗限制、多设备分辨率适配的玄学……这些痛点促使我重新梳理HarmonyOS相机开发的技术脉络——这正是本文的起源。比如之前在一款运动相机项目中,我们最初直接复用Android
- 高德地图API详解
芯作者
DD:日记云计算人工智能机器学习
高德地图API是一款基于Web的服务,为开发者提供了丰富的地理数据服务和功能。以下是对高德地图API的详细介绍:一、主要功能地图显示:支持全球范围各地的地图显示,包括街道、建筑物、自然地理等,用户可以将高德地图以图片形式嵌入自己的网页或应用中。地理/逆地理编码:提供结构化地址与经纬度之间的相互转化的能力。地理编码是将具体的地址转换为经纬度坐标的过程,逆地理编码则是通过经纬度获取地址信息。路线规划:
- facefusion AI换脸软件的本地部署过程记录
kfrealme
人工智能
tags:AI驾驭facefusion我的环境Win10+N卡安装步骤安装Python3.10方案手动安装Python官网下载安装包安装PythonReleasesforWindows|Python.org我的蓝奏云分享https://www.lanzoub.com/i9La81s1o5gb密码:h17b命令行安装1以管理员身份打开「命令提示符」2删除Microsoft官方源wingetsourc
- 短视频矩阵系统源码新发布技术方案有那几种?
Yxh18137784554
短视频矩阵开发矩阵算法架构
短视频矩阵系统从21年发展到现在经历了历史性的发展高潮经过各平台的反复变化政策,短视频矩阵系统目前做的为数不多的同梯队的筷子科技、云罗抖去推、超级编导都选用的是什么方式的代发解决方案呢?今天小编就来给我的技术粉们分享下一下几种常见的开发方案#短视频矩阵系统##短视频矩阵系统还能用吗?##短视频矩阵系统源码##短视频矩阵系统代发/托管发都有什么解决方案?短视频矩阵系统源码新发布的技术方案通常有以下几
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- Midscene.js自然语言驱动的网页自动化全指南
Hello.Reader
前端技术人工智能javascript自动化开发语言
一、概述网页自动化在数据抓取、UI测试和业务流程优化中发挥着重要作用。然而,传统工具如Selenium和Puppeteer要求用户具备编程技能,编写复杂的选择器和脚本维护成本高昂。Midscene.js通过自然语言接口革新了这一领域,用户只需描述任务(如“点击登录按钮”或“提取产品价格”),AI即可自动执行,大幅降低技术门槛。Midscene.js由web-infra-dev团队开发,开源于Git
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- 端到端的NLP框架(Haystack)
deepdata_cn
NLP自然语言处理人工智能
Haystack是一个端到端的NLP框架,专门用于构建基于文档的问答系统,是实现RAG的理想选择。它提供了数据预处理、文档存储、检索和生成等一系列组件,支持多种语言模型和检索器。提供可视化界面,方便用户进行配置和调试;支持多模态数据,可处理文本、图像等多种类型的数据;具有可扩展性,可根据需求添加自定义组件。2020年在自然语言处理技术快速发展,对高效、易用且灵活的端到端NLP框架需求日益增长的背景
- 客服机器人怎么才能精准的回答用户问题?
玩人工智能的辣条哥
AI面试机器人客服机器人
环境:客服机器人问题描述:客服机器人怎么才能精准的回答用户问题?解决方案:客服机器人要精准回答用户问题,需综合技术、数据和用户体验等多方面因素。以下是关键策略和步骤:1.精准理解用户意图自然语言处理(NLP)技术分词与实体识别:提取关键词(如“订单号”“退货”)和实体(如时间、地点)。意图分类:通过机器学习模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- 蓝桥杯真题 3513.岛屿个数
Feliz..
dfs和bfs算法深度优先
原题地址:1.岛屿个数-蓝桥云课问题描述小蓝得到了一副大小为M×NM×N的格子地图,可以将其视作一个只包含字符'0'(代表海水)和'1'(代表陆地)的二维数组,地图之外可以视作全部是海水,每个岛屿由在上/下/左/右四个方向上相邻的'1'相连接而形成。在岛屿AA所占据的格子中,如果可以从中选出kk个不同的格子,使得他们的坐标能够组成一个这样的排列:(x0,y0),(x1,y1),…,(xk−1,yk
- 基于腾讯云大模型知识引擎与DeepSeek的沉浸式历史文化体验系统实践
lijiek
腾讯云microsoft云计算
前言文化遗产数字化保护与传播是当今科技与人文交汇的重要领域。传统的数字化方法往往局限于静态展示,无法实现真正的互动体验。本文将探索一条创新路径:利用腾讯云大模型知识引擎(LKE)与DeepSeek模型构建沉浸式历史文化体验系统,实现与历史人物的"对话"、历史场景的"复原",以及文化知识的智能传播。作为实践案例,我们以中国古代科技成就为切入点,打造了一个可交互的"古代科技馆",让用户能够与张衡、祖冲
- 阿里云+华为云双活架构:头部企业的云端生存法则
云上的阿七
阿里云华为云架构
如何在云端构建高可用、高可靠的业务架构,依然是企业IT决策者面临的挑战。面对单一云厂商可能带来的故障风险,越来越多的头部企业开始采用“阿里云+华为云”双活架构,以提升业务连续性,实现跨云容灾,打造更稳健的云端生存法则。什么是双活架构?双活架构(Active-ActiveArchitecture)指的是企业在两个云平台(如阿里云和华为云)上同时运行核心业务,实现数据同步和业务负载均衡。一旦某一云平台
- python pip及常用国内镜像源
sunny05296
pythonpythonpip开发语言
pip常用国内镜像源pip默认从国外的python下载会很慢,建议使用一些国内的镜像源,常用的国内镜像源如下:#清华镜像源https://pypi.tuna.tsinghua.edu.cn/simple#中科大镜像源https://pypi.mirrors.ustc.edu.cn/simple#阿里云镜像源https://mirrors.aliyun.com/pypi/simplepip安装组件时
- 自然语言处理(5)—— 中文分词
隐私无忧
人工智能#自然语言处理自然语言处理中文分词人工智能
中文分词的基本原理及实现1.什么是词2.基本原理3.发展趋势:多数场景无需显式分词信息处理的目标是使用计算机能够理解和产生自然语言。而自然语言理解和产生的前提是对语言能够做出全面的解析。汉语词汇是语言中能够独立运用的最小的语言单位,是语言中的原子结构。由于中文缺乏类似英文的空格分隔,分词的准确性直接影响后续任务(如机器翻译、情感分析)的效果。因此,对中文进行分词就显得至关重要。中文分词(Chine
- DMDDM文档数据库学习分享
合作愉快:)
数据库学习
达梦新云文档数据库(简称DMDDM),是一款由达梦公司独立研发的分布式原生文档数据库产品。一、关键特性1、高性能、高可用性:DMDDM文档数据库支持快速的数据读写操作,能够满足高性能应用的需求。支持主备集群和分布式集群部署方式,单个节点故障不影响整个系统的正常运行。提供DDM-Meta、DDM-Store和DDM-Engine三个核心组件,分别负责存储数据库元数据和集群调度、存储实际的数据库数据以
- Deepseek API 调用
哦豁灬
LLM深度学习生产工具deepseekLLMAPI大模型
1获取APIKey目前比较知名的提供了DeepSeek的推理服务商包括硅基流动、阿里云、腾讯云等等。这些推理服务商一般是提供API接口,需要安装大模型客户端并配置API。获取API密钥,以硅基流动为例:前往硅基流动官方网站(https://cloud.siliconflow.cn)注册账号。在账户管理的API密钥中点击新建API密钥并复制。安装一个本地的第三方大模型客户并配置,常见的包括Chatb
- P1706 全排列问题 及 P1157 组合的输出
wwjjjww
算法深度优先图论
全排列:题目描述按照字典序输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字。输入格式一个整数n。输出格式由1∼n组成的所有不重复的数字序列,每行一个序列。#includeusingnamespacestd;intn;boolv[100];inta[100];voiddfs(intpos){if(pos==n+1){for(inti=1;i>n;dfs(
- 如何使用JSON输出解析器解析语言模型的输出
vaidfl
json语言模型easyuipython
在现代AI应用中,让语言模型返回结构化的数据是一个重要的能力,特别是在需要进一步处理或集成的时候。本文将深入探讨如何利用JsonOutputParser来解析语言模型的JSON输出。技术背景介绍随着语言模型的普及,许多应用场景需要从自然语言处理任务中获取结构化的输出。针对这一需求,输出解析器应运而生,它能够帮助我们定义JSON模式,通过提示语言模型生成符合该模式的输出,并将其解析为JSON格式。核
- 使用LocalAI进行文本嵌入的实战指南
bavDHAUO
python
技术背景介绍文本嵌入是一种将文本片段转换为高维向量的技术,可以用于自然语言处理任务中的相似性计算、信息检索等应用。LocalAI提供了一种本地化的嵌入解决方案,允许开发者在本地环境中运行和测试嵌入模型。通过在本地部署LocalAI服务,您可以避免依赖外部API,享受更快的响应速度和更好的数据隐私。核心原理解析LocalAIEmbedding类主要负责与本地运行的LocalAI服务通信,进行文本嵌入
- 【MATLAB】
不掉发的小刘
MATLABmatlab开发语言
数学计算与运算基础数学函数函数名功能示例sin(x)正弦函数sin(pi/2)→1cos(x)余弦函数cos(0)→1sqrt(x)平方根sqrt(4)→2exp(x)指数函数exp(1)→e≈2.718log(x)自然对数log(e)→1abs(x)绝对值abs(5)→5线性代数函数名功能示例A\b解线性方程组Ax=bA=21;11,b=3;2,x=A\b→x=1;1det(A)矩阵行列式det
- Kafka扩分区和分区副本重分配之后消费组会自动均衡吗?
石臻臻的杂货铺
Kafkakafka消费者
作者:石臻臻,CSDN博客之星Top5、KafkaContributor、nacosContributor、华为云MVP,腾讯云TVP,滴滴Kafka技术专家、KnowStreamingPMC)。KnowStreaming是滴滴开源的Kafka运维管控平台,有兴趣一起参与参与开发的同学,但是怕自己能力不够的同学,可以联系我,带你一起你参与开源!。KnowStreaming体验环境请访问:
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源