poj 2125 Destroying The Graph 最小割+方案输出

构图思路: 

1.将所有顶点v拆成两个点, v1,v2

2.源点S与v1连边,容量为 W-

3.v2与汇点连边,容量为 W+

4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大

则该图的最小割(最大流)即为最小花费。

简单证明: 根据ST割集的定义,将顶点分成两个点集。所以对于原图中的边(a,b),转换成 S->a1->b2->T. 则此时路径必定存在

一条割边,因为a1->b2为无穷大,所以割边必定是 S->a1 or b2->T,  若为前者则意味着删除a顶点的W-,后者则是b顶点的W+.

所以该图最小割即为最小花费。

计算方案: 对于构图后跑一次最大流,然后对于残留网络进行处理,首先从源点S出发,标记所有能访问到的顶点,这些顶点即为S割点集中

的顶点。 其他则为T集合中顶点, 然后从所有边中筛选出( A属于S,B属于T,且(A,B)容量为0 )的边,即为割边。因为我们的W+/W-边都只有一条,

且都分开了。比较容易处理。

#include<cstdio>

#include<cstring>

#include<cstdlib>

#include<string>

#include<vector>

#include<algorithm>

using namespace std;



const int MAXN = 220;

const int MAXM = 5050;

const int inf = 0x3f3f3f3f;

int A[MAXN], B[MAXN];

struct Edge{

    int u, v, f, nxt;

}edge[250000];

int head[MAXN], idx;

int n, m;

int S, T, N;



void AddEdge(int u,int v,int f){

    edge[idx].u = u, edge[idx].v = v, edge[idx].f = f;

    edge[idx].nxt = head[u]; head[u] = idx++;

    edge[idx].u = v, edge[idx].v = u, edge[idx].f = 0;

    edge[idx].nxt = head[v]; head[v] = idx++;

}



int h[MAXN], vh[MAXN];

int dfs(int u,int flow){

    if(u == T) return flow;

    int tmp = h[u]+1, sum = flow;

    for(int i = head[u]; ~i; i = edge[i].nxt){

        if( edge[i].f && (h[edge[i].v]+1 == h[u]) ){

            int p = dfs( edge[i].v, min(sum,edge[i].f));

            edge[i].f-=p, edge[i^1].f+=p, sum-=p;

            if( sum==0 || h[S]==N ) return flow-sum;

        }

    }

    for(int i = head[u]; ~i; i = edge[i].nxt)

        if( edge[i].f ) tmp = min( tmp, h[edge[i].v] );

    if( --vh[ h[u] ] == 0 ) h[S] = N;

    else ++vh[ h[u]=tmp+1 ];

    return flow-sum;

}

int sap(){

    int maxflow = 0;

    memset(h,0,sizeof(h));

    memset(vh,0,sizeof(vh));

    vh[0] = N;

    while( h[S] < N ) maxflow += dfs( S, inf );

    return maxflow;

}



bool vis[MAXN];

int res[MAXM];



void DFS(int u ){

    vis[u] = true;

    for(int i = head[u]; ~i; i = edge[i].nxt ){

        int v = edge[i].v;

        if( !vis[v] && edge[i].f )

            DFS( v );

    }

}

void solve(){

    int maxflow = sap();

    printf("%d\n", maxflow );

    memset( vis,0,sizeof(vis));

    DFS( S );



    int cnt = 0;

    for(int i = 0; i < idx; i += 2){

        int u = edge[i].u, v = edge[i].v;

        if( vis[u] && !vis[v] && (edge[i].f == 0) )

            res[cnt++] = i;

    }

    printf("%d\n", cnt );

    for(int i = 0; i < cnt; i++ ){

        int u = edge[ res[i] ].u, v = edge[ res[i] ].v;

        if( u == S ) printf("%d -\n", v);

        else printf("%d +\n", u-n );

    }

}



int main(){

    while( scanf("%d%d",&n,&m) != EOF ){

        S = 0, T = 2*n+1, N = 2*n+2; idx = 0;

        memset( head, -1, sizeof(head));



        for(int i = 1; i <= n; i++ )

            scanf("%d", &A[i]);

        for(int i = 1; i <= n; i++ )

            scanf("%d", &B[i]);

        int a, b;

        for(int i = 0; i < m; i++ ){

            scanf("%d%d", &a,&b);

            AddEdge( a, n+b, inf );

        }

        for(int i = 1; i <= n; i++){

            AddEdge( S, i, B[i] ); // - out

            AddEdge( n+i, T, A[i] );// + in

        }

        solve();

    }

    return 0;

}
View Code

 

你可能感兴趣的:(Graph)