下载源代码:
链接:https://pan.baidu.com/s/1sLxMT78LVg2dWyXXFvM--w?pwd=2kwl 提取码:2kwl --来自百度网盘超级会员V5的分享https://pan.baidu.com/s/1sLxMT78LVg2dWyXXFvM--w?pwd=2kwl
深度优先搜索(亦称深度优先遍历,Deep First Search,简称DFS),广度优先搜索(亦称广度优先遍历,Breadth First Search,简称BFS)都是很基础的算法,也是大家很熟悉的。
先看一下可视化的效果。
摘自:明引树的广度优先遍历与深度优先遍历算法_明引的博客-CSDN博客_深度遍历和广度遍历算法1 树的广度优先搜索算法 广度优先搜索算法(Breadth First Search),又叫宽度优先搜索,或横向优先搜索。 是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。 如上图所示的二叉树,A 是第一个访问的,然后顺序是 B、C,然后再是 D、E、F、G。 那么,怎样才能来保证这个访问的顺序呢? 借助队列数据结构,由于队列是先进先出的顺序,因此可以先https://blog.csdn.net/lmingyin5/article/details/47282925
广度优先遍历算法,又叫宽度优先遍历,或横向优先遍历,是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。
深度优先遍历算法是遍历算法的一种。是沿着树的深度遍历树的节点。
当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。
如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。
摘自:小枫学IT https://blog.csdn.net/EngineerofAI/article/details/120590420广度优先搜索算法类似于二叉树的层序遍历,是一种分层的查找过程,每向前一步可能访问一批顶点,没有回退的情况,因此不是一个递归的算法。首先访问起始顶点v,接着由v出发,依存访问v的各个未访问过的邻接顶点w1,w2,…,wi,然后依次访问w1,w2,…,wi的所有未被访问过的邻接顶点;再从这些访问过的顶点出发,访问它们所有未被访问过的邻接顶点······依次类推,直到图中所有顶点都被访问过为止。
与广度优先搜索不同,深度优先搜索(Depth-First-Search,DFS)类似于树的先序遍历。过程:从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节点,然后从另一条路开始走到底,直到所有顶点被全部走完,这种尽量往深处走的概念即是深度优先的概念。
摘自: csdnBigBoy
代码可用,注释清晰全面,大家可以仔细阅读。
学生经常问,什么样的程序是好程序?最基本的就是:
(1)好读:程序要便于阅读;注释合理;格式化;
(2)好看:程序逻辑、思路清晰、模块与板块划分合理;命名规则一致;
(3)好用:运行正常;稳定第一、性能第二;
因此,程序的运行结果能及时被看到!程序可视化是重要的一种形式。
先看看效果:
上代码(改编自csdnBigBoy的代码 ):
using System;
using System.Text;
using System.Linq;
using System.Data;
using System.Collections;
using System.Collections.Generic;
using System.Windows.Forms;
namespace DFSBFS
{
public partial class Form1 : Form
{
TreeInfo TreeTotal = null;
List PathResult = null;
public Form1()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
this.Text = "深度优先搜索算法DFS,广度优先搜索算法BFS,可视化编程实例";
button1.Text = "深度优先搜索算法 DFS"; button1.Cursor = Cursors.Hand;
button2.Text = "广度优先搜索算法 BFS"; button2.Cursor = Cursors.Hand;
panel1.Dock = DockStyle.Top; panel2.Dock = DockStyle.Fill;
webBrowser1.Navigate("http://www.315soft.com");
}
private static TreeInfo TreeGrowth()
{
TreeInfo tree = new TreeInfo();
tree.Append(new NodeInfo(1, new int[] { 3, 2, 4 }));
tree.Append(new NodeInfo(2, new int[] { 1, 5, 8, 300 }));
tree.Append(new NodeInfo(3, new int[] { 1, 7, 9, 100 }));
tree.Append(new NodeInfo(4, new int[] { 1, 6, 10, 200 }));
tree.Append(new NodeInfo(5, new int[] { 2 }));
tree.Append(new NodeInfo(6, new int[] { 4 }));
tree.Append(new NodeInfo(7, new int[] { 3 }));
tree.Append(new NodeInfo(8, new int[] { 2 }));
tree.Append(new NodeInfo(9, new int[] { 3, 400 }));
tree.Append(new NodeInfo(10, new int[] { 4 }));
tree.Append(new NodeInfo(100, new int[] { 3 }));
tree.Append(new NodeInfo(200, new int[] { 4 }));
tree.Append(new NodeInfo(300, new int[] { 2 }));
tree.Append(new NodeInfo(400, new int[] { 9 }));
return tree;
}
///
/// 深度优先搜索算法
/// Deep First Search Algorithm
///
///
///
private static List DFS(TreeInfo Tree, NodeInfo startNode)
{
// 详细注解请浏览原文
// https://blog.csdn.net/CSDNBigBoy/article/details/80635220
List path = new List();
path.Add(startNode);
List b = new List();
b.Add(startNode);
startNode.Visited = true;
NodeInfo a = new NodeInfo();
while (b.Count != 0)
{
List b_nbs = Tree.FindNeighbors(b[b.Count - 1]);
a = b_nbs.FirstOrDefault(k => !k.Visited);
while (a != null)
{
b.Add(a);
path.Add(a);
a.Visited = true;
b_nbs = Tree.FindNeighbors(b[b.Count - 1]);
a = b_nbs.FirstOrDefault(k => !k.Visited);
}
if (a == null)
{
b.Remove(b[b.Count - 1]);
}
}
return path;
}
///
/// 广度优先搜索算法
/// Breadth First Search Algorithm
///
///
///
private static List BFS(TreeInfo Tree, NodeInfo startNode)
{
// 详细注解请浏览原文
// https://blog.csdn.net/CSDNBigBoy/article/details/80635220
List path = new List();
path.Add(startNode);
Queue qq = new Queue();
qq.Enqueue(startNode);
startNode.Visited = true;
NodeInfo a = new NodeInfo();
while (qq.Count != 0)
{
a = (NodeInfo)qq.Dequeue();
List a_nbs = Tree.FindNeighbors(a);
foreach (NodeInfo tmp in a_nbs.Where(k => !k.Visited).ToList())
{
qq.Enqueue(tmp);
path.Add(tmp);
tmp.Visited = true;
}
}
return path;
}
private string ShowPath()
{
StringBuilder sb = new StringBuilder();
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("
");
sb.AppendLine(ShowInTable());
sb.AppendLine("
");
int k = 0;
foreach (NodeInfo node in PathResult)
{
sb.AppendLine("" + node.Id + "");
sb.AppendLine("→");
if (k >= loop) break;
k++;
}
sb.AppendLine("");
sb.AppendLine("");
sb.AppendLine("");
return sb.ToString();
}
int loop = 0;
private void button1_Click(object sender, EventArgs e)
{
TreeTotal = TreeGrowth();
PathResult = DFS(TreeTotal, TreeTotal.First());
timer1.Interval = 1000;
timer1.Enabled = true;
loop = 0;
}
private void button2_Click(object sender, EventArgs e)
{
TreeTotal = TreeGrowth();
PathResult = BFS(TreeTotal, TreeTotal.First());
timer1.Interval = 1000;
timer1.Enabled = true;
loop = 0;
}
public string ShowInTable()
{
int[,] matrix = new int[4, 9]
{
{ 0,0,0,0,1,0,0,0,0 },
{ 0,3,0,0,2,0,0,4,0 },
{ 7,9,100,5,8,300,6,10,200 },
{ 0,400,0,0,0,0,0,0,0 },
};
for(int i = 0; i < TreeTotal.Nodes.Count; i++)
{
TreeTotal.Nodes[i].Visited = false;
}
for (int i = 0; i <= loop; i++)
{
PathResult[i].Visited = true;
}
StringBuilder sb = new StringBuilder();
sb.AppendLine("");
sb.AppendLine("");
for (int y = 0; y < 4; y++)
{
sb.AppendLine("");
for (int x = 0; x < 9; x++)
{
int nk = matrix[y, x];
if (nk >= 100) nk = 10 + nk / 100;
if (nk == 0)
{
sb.Append(" ");
}
else if (TreeTotal.Nodes[nk - 1].Visited == true)
{
sb.Append("" + TreeTotal.Nodes[nk - 1].Id + " ");
}
else
{
sb.Append("" + TreeTotal.Nodes[nk - 1].Id + " ");
}
}
sb.AppendLine(" ");
}
sb.AppendLine("
");
return sb.ToString();
}
private void timer1_Tick(object sender, EventArgs e)
{
if (loop < PathResult.Count)
{
webBrowser1.DocumentText = ShowPath();
loop++;
return;
}
loop = 0;
}
}
///
/// 树
///
public class TreeInfo
{
///
/// 所有节点
///
public List Nodes { get; set; } = new List();
///
/// 新增节点
///
///
public void Append(NodeInfo node)
{
Nodes.Add(node);
}
///
/// 第一个节点
///
///
public NodeInfo First()
{
return Nodes[0];
}
///
/// 搜索指定节点的邻居(邻接节点)
///
///
///
public List FindNeighbors(NodeInfo node)
{
List list = new List();
foreach (int nx in node.Neighbors)
{
list.Add(Nodes.FirstOrDefault(k => k.Id == nx));
}
return list;
}
}
///
/// 节点信息
/// 来自:https://blog.csdn.net/CSDNBigBoy/article/details/80635220
///
public class NodeInfo
{
///
/// 节点的id
///
public int Id { get; set; } = 0;
///
/// 是否被遍历过的标记,默认false表示没有被遍历过
///
public bool Visited { get; set; } = false;
///
/// 用于存储该元素的临接元素的id
///
public int[] Neighbors { get; set; } = null;
///
/// 构造函数
///
public NodeInfo() { }
///
/// 构造函数
///
///
///
public NodeInfo(int id, int[] neighbors)
{
Id = id;
Neighbors = neighbors;
}
}
}
有动图,效果就是不一样!
需要两个 js 文件,一个是 jQuery ,自己去下载吧。
另外一个画(绘制)树结构的源代码 dfsbfs.js。
在工程包内,下载解压即可。
——————————————————————
POWER BY 315SOFT.COM &
TRUFFER.CN