ArrayList类定义
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable{}
ArrayList继承了AbstractList,实现了List RandomAccess等接口。
主要成员变量
/**
* Default initial capacity.
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* Shared empty array instance used for empty instances.
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == EMPTY_ELEMENTDATA will be expanded to
* DEFAULT_CAPACITY when the first element is added.
*/
private transient Object[] elementData;
/**
* The size of the ArrayList (the number of elements it contains).
*
* @serial
*/
private int size;
- DEFAULT_CAPACITY : 默认数组容量。如果初始化不指定容量,则第一次add元素时会使用该值。
- EMPTY_ELEMENTDATA:如果初始化不指定容量,则使用该空的数组。
- elementData:真正存储元素的数组
- size:元素的个数。
构造方法
/**
* Constructs an empty list with the specified initial capacity.
*
* @param initialCapacity the initial capacity of the list
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
}
指定初始化容量,如果元素属很多的话,可以在初始化时直接指定一个大的容量,可以减少后续的扩容操作,提高一定的性能。
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
super();
this.elementData = EMPTY_ELEMENTDATA;
}
初始化不指定容量,使用一个空的数组。
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
使用一个Collection来初始化arrayList,注意c.toArray()可能会返回具体类型,所以需要重新将其变为Object[]类型。
主要方法
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
size()和isEmpty()方法,size成员变量
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index i such that
* (o==null ? get(i)==null : o.equals(get(i))),
* or -1 if there is no such index.
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
indexOf(Object o) 在数组中查找指定元素,注意因为arrayList允许添加null到数组中,所以需要根据是否是null区别查找。
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
获取元素时会进行检查,使用rangeCheck(int index)方法进行检验
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
替换元素
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
添加元素,首先是确保数组空间足够,如果不够会进行扩容,这个操作是由ensureCapacityInternal(int minSize)保证的,这个方法会稍后分析。
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
在指定位置添加元素,在整个arrayList类中,System.arraycopy()方法出镜率很高,这个是native方法,效率很高。
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* Private remove method that skips bounds checking and does not
* return the value removed.
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
两个remove方法和一个fastRemove方法,需要注意的是移除元素的操作是将后面的元素均往前移一个位置,然后将最后的元素置为null,然后由gc来进行回收,如果不置null,则会出现内存泄漏。fastRemove(int index)是remove(int index)的简化版本,去掉了边界检查和返回值,稍微提高了一些效率。
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
清空方法实质就是将所有位置置为null,修改size为0。
public Iterator iterator() {
return new Itr();
}
/**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
ArrayList的iterator方法,关键看一下Itr这个类,其中有一个很重要的成员变量:expectedModCount,这个变量是在checkForComodification()中使用的,这个方法就一个if语句,如果modCount !== expectedModCount,则抛出ConcurrentModificationException。
需要注意的一点是在remove()方法中,重置了expectedModCount,这样就不会抛出ConcurrentModification异常。
接下来看看这个modCount是哪路神仙。这个变量在之前的add remove方法中已经出现过了,是在AbstractList中定义的。
/**
* The number of times this list has been structurally modified.
* Structural modifications are those that change the size of the
* list, or otherwise perturb it in such a fashion that iterations in
* progress may yield incorrect results.
*
* This field is used by the iterator and list iterator implementation
* returned by the {@code iterator} and {@code listIterator} methods.
* If the value of this field changes unexpectedly, the iterator (or list
* iterator) will throw a {@code ConcurrentModificationException} in
* response to the {@code next}, {@code remove}, {@code previous},
* {@code set} or {@code add} operations. This provides
* fail-fast behavior, rather than non-deterministic behavior in
* the face of concurrent modification during iteration.
*
*
Use of this field by subclasses is optional. If a subclass
* wishes to provide fail-fast iterators (and list iterators), then it
* merely has to increment this field in its {@code add(int, E)} and
* {@code remove(int)} methods (and any other methods that it overrides
* that result in structural modifications to the list). A single call to
* {@code add(int, E)} or {@code remove(int)} must add no more than
* one to this field, or the iterators (and list iterators) will throw
* bogus {@code ConcurrentModificationExceptions}. If an implementation
* does not wish to provide fail-fast iterators, this field may be
* ignored.
*/
protected transient int modCount = 0;
大概的意思是这个变量代表了这个arraylist进行了多少次结构化的变化(structuarally modified),那么什么是structuarally modified呢?这个变化指的是arraylist中的数组的添加和删除和扩容事件,在之前的add remove中可以看到有modCount++这一语句,这个就是说明数组变化了,和之前的不一样了,如果有迭代器在别用用着,那么调用next 或者remove就会抛出ConcurrentModification异常。注意修改数组内的值并不会导致modCount增加。通过这个变量来提供fail-fast机制。这个也说明了ArrayList不是线程安全的。
接下来看一下如何数组如何扩容。
/**
* Increases the capacity of this ArrayList instance, if
* necessary, to ensure that it can hold at least the number of elements
* specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != EMPTY_ELEMENTDATA)
// any size if real element table
? 0
// larger than default for empty table. It's already supposed to be
// at default size.
: DEFAULT_CAPACITY;
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
这几个方法是扩容的关键方法。其中的核心方法是grow(int minCapacity)方法,由int newCapacity = oldCapacity + (oldCapacity >> 1);
我们可以看出一次扩容是变为原来数组的1.5倍。
ArrayList可以通过Collections的静态方法包装成线程安全的,之前的线程安全的vector不推荐使用。