def seg(data_input, testday):
data_input['TRADE_DT'] = data_input['TRADE_DT'].astype('int')
now_loc = data_input[data_input.TRADE_DT < testday].index.tolist()[-1]
sixty_loc = now_loc - 60
data_llt = data_input.iloc[(sixty_loc + 1):(now_loc + 1), :]
data_llt = data_llt.reset_index(drop=True)
return data_llt
def log_plot():
plt.plot(
xs,
[math.log(x) for x in bt_value.net_value.astype(float)],
label='net_value',
linestyle='-',
linewidth=1.0)
plt.plot(
xs,
[math.log(x) for x in bt_value.benchmark.astype(float)],
label='benchmark',
color='y',
linestyle='-',
linewidth=1.0)
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m'))
plt.gca().xaxis.set_major_locator(mdates.DayLocator(1))
plt.gcf().autofmt_xdate()
plt.title('策略净值走势(对数)', fontsize=24)
plt.legend(loc='best')
plt.grid(True)
plt.show()
def Calriskfac(bt_value, begin_year, end_year):
loc1 = bt_value[bt_value.date_bt.astype(
'int') < begin_year].index.tolist()[-1]
loc2 = bt_value[bt_value.date_bt.astype(
'int') <= end_year].index.tolist()[-1]
temporal_bt_value = bt_value.iloc[loc1:loc2 + 1].reset_index(drop=True)
benchmark = np.array(temporal_bt_value.benchmark)
net_value = np.array(temporal_bt_value.net_value)
num_long = np.array(temporal_bt_value.num_long)
num_short = np.array(temporal_bt_value.num_short)
returns_benchmark = (benchmark[-1] - benchmark[0]) / benchmark[0] # 基准收益
annualized_returns_benchmark = (
1 + returns_benchmark)**(250 / (len(benchmark) - 1)) - 1 # 基准年化收益
returns = (net_value[-1] - net_value[0]) / net_value[0] # 策略收益
annualized_returns = (1 + returns)**(250 /
(len(net_value) - 1)) - 1 # 策略年化收益
# alpha、beta
dp = [(net_value[i] - net_value[i - 1]) / net_value[i - 1]
for i in range(1, len(net_value), 1)]
dm = [(benchmark[i] - benchmark[i - 1]) / benchmark[i - 1]
for i in range(1, len(benchmark), 1)]
beta = np.cov(dp, dm)[0, 1] / np.var(dm)
alpha = annualized_returns - \
(0.04 + beta * (annualized_returns_benchmark - 0.04))
# sharpe
sharp_ratio = (annualized_returns - 0.04) / \
(np.array(dp).std() * math.sqrt(len(net_value) - 1))
# 最大回撤
# net_value = np.array(net_value)
i = np.argmax(np.maximum.accumulate(net_value) - net_value)
j = np.argmax(net_value[:i])
max_drawdown = (net_value[j] - net_value[i]) / net_value[j]
# net_value = net_value.tolist()
# trade_dt = trade_dt.tolist()
# df
risk_indicator = pd.DataFrame([[returns,
returns_benchmark,
alpha,
beta,
sharp_ratio,
max_drawdown,
num_long[-1] - num_long[0],
num_short[-1] - num_short[0]]],
columns=['策略收益',
'基准收益',
'alpha',
'beta',
'夏普率',
'最大回撤',
'开多次数',
'开空次数'])
return risk_indicator
risk_indicator = pd.concat(
[
Calriskfac(
bt_value, 20150101, 20151231), Calriskfac(
bt_value, 20160101, 20161231), Calriskfac(
bt_value, 20170101, 20171231), Calriskfac(
bt_value, 20180101, 20181231), Calriskfac(
bt_value, 20190101, end
)])
risk_indicator['年份'] = ['2015', '2016', '2017', '2018', '2019']
risk_indicator = risk_indicator.reindex(
columns=[
'年份',
'策略收益',
'基准收益',
'alpha',
'beta',
'夏普率',
'最大回撤',
'开多次数',
'开空次数',
'平仓次数']).reset_index(
drop=True)
添加垂直线
#
ax.axvline(
datetime.datetime.strptime(
'20150101',
'%Y%m%d').date(),
linewidth=2,
linestyle='dashed',
color='purple')
#
ax2 = plt.subplot(212)
plt.plot(
xs,
[math.log(x) for x in bt_value.net_value.astype(float)],
label='net_value',
linestyle='-',
linewidth=1.0)
plt.plot(
xs,
[math.log(x) for x in bt_value.benchmark.astype(float)],
label='benchmark',
color='y',
linestyle='-',
linewidth=1.0)