- OpenCV实战:图像颜色识别与提取、掩膜制作
前言在计算机视觉和图像处理领域,颜色识别是一项基础而重要的技术。无论是交通标志识别、工业分拣还是美颜滤镜开发,都离不开对特定颜色的处理。本文将带你全面掌握使用OpenCV进行颜色识别的关键技术,包含完整的代码实现和原理讲解。一、颜色空间基础1.1RGB颜色空间在图像处理中,最常见的就是RGB颜色空间。RGB颜色空间是我们接触最多的颜色空间,是一种用于表示和显示彩色图像的一种颜色模型。RGB代表红色
- MongoDB 与关系型数据库的核心区别(面试向详解)
真IT布道者
数据库mongodb面试
一、数据模型差异1.1结构化vs半结构化关系型数据库:严格遵循二维表结构,需要预定义Schema(字段名、数据类型、约束等)CREATETABLEusers(idINTPRIMARYKEY,nameVARCHAR(50)NOTNULL,ageINTCHECK(age>0)MongoDB:采用BSON文档模型(类似JSON),支持动态Schema//同一个集合中可以存在不同结构的文档db.users
- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- 图像检索评价指标:mAP@k、mAP的计算
/home/liupc
11Python/DL/ML
mAP,meanAveragePrecision,平均检索精度.是图像检索领域最最常用的评价指标。一、mAP@k、mAP1.1mAP@k很多地方喜欢用这张图来解释,确实画的很好了,不过略有瑕疵,我稍微修改了一下。这张图是求mAP@10的结果。原图主要存在的问题就是,在前10张图片中,把所有的相似的结果都返回了。这样会给读者造成这样的困扰:没检索出来的但是又相似的图片怎么办??改了之后,就清晰多了。
- 从指令设计到系统集成:提示词工具链与GPTs插件的效率革命
charles666666
人工智能自然语言处理语言模型知识图谱transformer
一、提示词工程工具链:概念与架构解析1.1为什么需要工具链?大模型交互的本质是“指令设计”,但人工编写提示词存在三大痛点:效率低(重复调试耗时)、质量不稳定(依赖个人经验)、复用性差(场景迁移成本高)。例如,某电商企业要求AI生成500种商品描述时,人工逐条调整提示词需耗费数周,且风格难以统一。工具链的价值在于通过模块化设计与自动化流程解决上述问题。其核心架构包含三个层级:需求解析层:将用户需求拆
- 深入详解:随机森林算法——概念、原理、实现与应用场景
猿享天开
算法随机森林机器学习
深入详解:随机森林算法——概念、原理、实现与应用场景随机森林(RandomForest,RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过图文结合的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。1.核心概念与直观理解1.1什么是随机森林?随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树进行协同预测。其核心思想是"三个臭皮匠,顶个诸葛亮"——多
- SELinux 从理论到实践:深入解析与实战指南
智驾
LinuxSELinuxTEELinux安全启动
文章目录引言:为什么需要SELinux?第一部分:SELinux核心理论1.1SELinux的三大核心模型1.2安全上下文(SecurityContext)1.3策略语言与模块化第二部分:实战操作指南2.1SELinux状态管理2.2文件上下文管理2.3服务配置与排错第三部分:高级技巧与最佳实践3.1自定义策略模块开发3.2常见问题与解决方案总结:SELinux的价值与学习路径参考引言:为什么需要
- 揭秘MySQL索引下推(ICP)的底层原理与高并发场景性能调优
Minxinbb
数据库mysql数据库dba
引言在千万级数据量的OLTP场景中,索引下推(IndexConditionPushdown,ICP)作为MySQL5.6引入的核心优化技术,可将特定场景的查询性能提升10倍以上。本文将从InnoDB存储引擎的索引结构出发,结合B+树遍历原理,深入解析ICP的工作机制,并通过压力测试对比验证优化效果。一、索引下推的核心原理剖析1.1传统索引查询的瓶颈未启用ICP时的查询流程(以复合索引(a,b,c)
- 第27篇:SELinux安全增强机制深度解析与OpenEuler实践指南
SELinux安全增强机制深度解析与OpenEuler实践指南一、SELinux核心概念与安全体系架构1.1访问控制机制演进与SELinux定位在计算机系统安全领域,访问控制机制经历了从简单到复杂的发展历程。传统的自主访问控制(DAC)以文件所有者权限为核心,如Linux中的UID/GID权限体系,允许所有者自由分配权限,但这种机制在面对多用户复杂环境时存在安全隐患——一旦用户账户被入侵,攻击者可
- 【项目实战】Redis使用场景之基于Redis实现分布式限流
本本本添哥
002-进阶开发能力003-数据库redis分布式数据库
一、技术概览1.1定义分布式限流是指在分布式系统中限制请求的速率,以保护后端服务不被过多的请求压垮。它可以帮助我们控制系统的负载,保证服务的稳定性。Redis是一个高性能的键值存储系统,常用于缓存、消息队列和实时分析等场景。由于其支持丰富的数据结构和原子操作,非常适合用来实现分布式限流。专业术语:令牌桶算法(TokenBucket):一种流量整形算法,允许突发流量但不超过平均速度。漏桶算法(Lea
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- 深入剖析 Linux 内核网络核心:sock.c 源码解析
109702008
编程#C语言网络linux网络人工智能
作为Linux网络子系统的基石,sock.c承载着协议无关的核心功能。本文将深入分析其关键实现,揭示高性能网络通信背后的设计哲学。一、Socket生命周期管理1.1初始化与分配sock_init_data()是socket的初始化入口,负责设置核心回调函数和默认参数:voidsock_init_data(structsocket*sock,structsock*sk){sk->sk_state=T
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 随机化在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、随机化的核心目的1.1控制混杂偏倚1.1.1平衡预后因素确保已知/未知预后因素在组间分布均衡,避免基线不平衡影响结果。1.1.2避免选择偏倚防止研究者或患者主观选择分组,保障组间差异归因于干预。1.2保障统计推断有效性1.2.1满足独立性假设满足统计检验的独立性假设,使统计推断有效。1.2.2实现盲法基础为双盲实施提供先决条件,确保试验结果无偏。二、随机化类型与技术实现2.1简单随机化2.1.
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 临床试验评价指标解析
qq_34062333
临床试验统计学
一、主要疗效终点1.1生存类终点1.1.1总生存期(OS)定义:随机至全因死亡的时间统计方法:Kaplan-Meier,Cox模型优势/局限:金标准,无测量偏倚;但需大样本长随访1.1.2无进展生存期(PFS)定义:随机至疾病进展/死亡的时间统计方法:同上优势/局限:敏感、不受后续治疗影响;但评估易受主观性干扰1.1.3客观缓解率(ORR)定义:肿瘤缩小≥30%的患者比例(RECIST标准)统计方
- 整合性安全总结(ISS)早期规划
qq_34062333
临床试验NDA
1.ISS统一性建设工作启动1.1研究元数据标准化1.1.1不同类型研究元数据规范DBL研究锁定数据库后,需梳理元数据,确保信息完整准确,为后续分析奠定基础。OL研究进行中,实时更新元数据,反映研究进展,避免数据偏差影响结果。新启动研究,依据统一模板构建元数据,减少初期工作量,提高研究效率。1.1.2cADaM规范建立结合各类研究特点,制定跨研究核心分析数据集规范,提升数据整合性。规范涵盖数据结构
- 管理会议最佳实践:高效协同与价值最大化
qq_34062333
项目管理
1.会前准备:明确目标与计划1.1明确会议目的1.1.1必要性评估开会前需自问是否真的需要开会,若问题可通过邮件、文档或异步沟通解决,则应避免开会,以节省时间和资源。1.1.2目标定义清晰定义会议目标,如决策、信息同步、创意讨论等,并提前告知参与者,使大家明确参会目的,提前做好准备。1.2制定精准议程1.2.1议程发布提前1-2天发布议程,明确议题、时间分配及每个环节的负责人,让参与者提前了解会议
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- Web中间件性能调优指南:线程池、长连接与负载均衡的最佳实践
编程实战派-李工
《Java负载均衡中间件优化Tomcat调优Nginx配置性能工程线程池技术Keep-Alive优化
目录引言一、Web容器线程池配置不当1.1线程池参数的核心作用与影响1.2线程池大小计算模型1.3动态调优实践二、Keep-Alive机制配置缺陷2.1Keep-Alive的工作原理2.2典型配置问题与影响2.3优化配置建议三、负载均衡策略缺失3.1负载均衡的核心价值3.2主流负载均衡算法对比3.3Nginx关键配置优化四、全链路压测与调优方案4.1压测实施流程4.2典型优化案例4.3持续监控体系
- 盲法在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、盲法分级与科学价值1.1开放标签1.1.1受盲对象无隐藏。1.1.2适用场景外科手术、器械试验等无法伪装的操作。1.1.3偏倚控制目标仅客观终点(生存率、实验室指标)。1.2单盲1.2.1受盲对象患者。1.2.2适用场景患者报告结局(PRO)为主的试验(如抑郁症)。1.2.3偏倚控制目标避免患者期望效应影响主观症状报告。1.3双盲1.3.1受盲对象患者+研究者+评估员。1.3.2适用场景药物试
- 【企业研发】ELK开发
flyair_China
djangopython后端
一、ElasticSearchElasticsearch作为当前最流行的全文检索引擎之一,在众多领域展现出强大的搜索和分析能力。1.1、全文检索与精准检索的差异Elasticsearch提供两种主要的查询方式:全文检索匹配检索(Full-textMatchQuery)和精准匹配检索(ExactMatchQuery),它们在处理查询词和索引数据时有显著区别。1.精准匹配检索(ExactMatchQu
- 【IO优化】磁盘IO优化
flyair_China
云计算
一、磁盘I/O优化的方案1.1、硬件与存储架构优化存储介质升级SSD/NVMe替代HDD:随机读写性能提升100倍,延迟降至微秒级(HDD寻道时间约5-10ms,SSD/sys/block/nvme0n1/queue/scheduler#NVMe调度器设置1.3、内核级缓存与预取策略脏页刷新控制参数调整:#降低后台刷脏阈值(避免突发I/O)echo5>/proc/sys/vm/dirty_back
- 【网络安全】对称密码体制
Hacker_xingchen
web安全安全网络
1.对称密码体制概述1.1定义与特点对称密码体制,也称为单钥密码体制,是一种加密方法,其中加密和解密过程使用相同的密钥。这种加密方式的主要特点包括简单、高效和计算速度快,适合于大量数据的快速加密和解密。对称密码体制的安全性完全依赖于密钥的保密性,一旦密钥被泄露,加密的安全性就会受到威胁。效率:对称密码算法通常比非对称密码算法要快,因为它们的算法结构相对简单,计算量较小。密钥管理:对称密码体制的密钥
- Vue 3 最基础核心知识详解
第七种黄昏
vue.js前端javascript
Vue3作为现代前端主流框架,是前后端开发者都应当掌握的核心技能。本篇文章将带你了解vue3的基础核心知识,适合学习与复习一、Vue3应用创建1.1创建Vue应用的基本步骤//main.jsimport{createApp}from'vue'//1.导入createApp函数importAppfrom'./App.vue'//2.导入根组件constapp=createApp(App)//3.创建
- 黑马JVM解析笔记(六):深入理解JVM类加载机制与运行时优化
null不是我干的
JVMjvm笔记
1.JVM类加载类加载是Java虚拟机将描述类.class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被JVM直接使用的Java类型的过程。核心阶段:加载—>连接—>初始化1.1加载,以jdk1.8为例类加载器先把Person.class字节码解析为InstanceKlass(底层是c++)结构,存放一些关键信息和对象的引用,生命周期与类加载器相同(类卸载时才释放)然后就是把新
- MapReduce概述
Tate小白
大数据学习mapreduce
1、MapReduce概述1.1MapReduce定义MapReduce是一个分布式运算程序的编程框架,是用户开发“Hadoop的数据分析应用”的核心框架。MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Reduc
- 【Axum】Rust Web 高效构建:Axum 框架从入门到精通指南
LCG元
前端rust前端开发语言
目录一、环境准备与项目创建1.1安装Rust工具链1.2创建项目并添加依赖二、Axum核心架构解析三、项目结构设计四、核心代码实现4.1应用入口(src/main.rs)4.2数据模型(src/models.rs)4.3路由配置(src/routes.rs)4.4认证服务(src/services/auth.rs)4.5用户处理器(src/handlers.rs)4.6数据访问层(src/repo
- 基于PaddleOCR的表格识别系统开发
pk_xz123456
仿真模型深度学习算法深度学习开发语言分类安全cnn
基于PaddleOCR的表格识别系统开发1.项目概述本项目旨在使用PaddleOCR框架开发一个高性能的表格识别系统,能够准确识别约30种不同类型的表格结构。系统将处理2500张合成表格图像作为训练数据,并在合成测试集上进行评估。系统核心功能包括表格检测、表格结构识别和表格内容识别三部分。1.1项目背景表格是信息传递的重要载体,广泛存在于各类文档中。传统表格识别方法需要复杂的规则和模板,而基于深度
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR