手搓没有softmax 的gpt

手搓没有softmax 的gpt

  • 代码
  • 解析代码

代码

import pandas as pd
from tqdm import tqdm
import numpy as np
import paddle

# 
class FeedForward(paddle.nn.Layer):
    def __init__(self, hidden_dim):
        super(FeedForward, self).__init__()
        self.fc_one = paddle.nn.Linear(hidden_dim, hidden_dim // 2, bias_attr=False)
        self.fc_two = paddle.nn.Linear(hidden_dim // 2, hidden_dim, bias_attr=False)
        self.gre = paddle.nn.GELU()

    def forward(self, feed_x):
        feed_x = self.fc_one(feed_x)
        feed_x = self.gre(feed_x)
        feed_x = self.fc_two(feed_x)
        return feed_x

# 注意力层
class Attention(paddle.nn.Layer):
    def __init__(self, hidden_dim, heads):
        super(Attention, self).__init__()

        self.q = paddle.nn.Linear(hidden_dim, heads * hidden_dim, bias_attr=False)
        self.k = paddle.nn.Linear(hidden_dim, heads * hidden_dim, bias_attr=False)
        self.v = paddle.nn.Linear(hidden_dim, heads * hidden_dim, bias_attr=False)
        self.heads = heads

    def forward(self, sx):
        b, s, h = sx.shape
        q = paddle.nn.functional.relu(self.q(sx))
        k = paddle.nn.functional.relu(self.k(sx))
        v = self.v(sx)

        qk = q.reshape([b, s, self.heads, h]).transpose([0, 2, 1, 3]) @ k.reshape([b, s, self.heads, h]).transpose(
            [0, 2, 3, 1])
        mask = paddle.triu(paddle.ones([s, s]))
        # mask[mask == 0] = -np.inf
        qk_mask = qk * mask
        qk = qk_mask / (paddle.sum(qk_mask, -2).unsqueeze([-2]) + 0.00000000000001)
        qkv = qk.transpose([0, 1, 3, 2]) @ v.reshape([b, s, self.heads, h]).transpose([0, 2, 1, 3])
        qkv = qkv.transpose([0, 2, 3, 1])
        qkv = paddle.nn.functional.max_pool1d(qkv.reshape([b, -1, self.heads]), self.heads).reshape([b, s, h])
        return qkv


class GPT(paddle.nn.Layer):
    def __init__(self, voc_size, hidden_dim, row_layers, lora=False):
        super(GPT, self).__init__()

        self.em = paddle.nn.Embedding(voc_size, hidden_dim)
        self.cv = Attention(hidden_dim, row_layers)
        self.feed = FeedForward(hidden_dim)

        self.lora = FeedForward(hidden_dim)
        self.lora_flag = lora
        self.out_layer = paddle.nn.Linear(hidden_dim, voc_size, bias_attr=False)
        self.layer_nor = paddle.nn.LayerNorm(hidden_dim, bias_attr=False)
        # self.p_next = paddle.to_tensor(list(range(voc_size))).astype("int64").reshape([1, -1])

    def forward(self, sx):
        if self.lora_flag:
            with paddle.no_grad():
                sx = self.em(sx)

                sx += self.cv(sx)
                sx = self.layer_nor(sx)
                sx += self.feed(sx)
                sx = self.layer_nor(sx)
            sx += self.lora(sx)
            with paddle.no_grad():
                out = self.out_layer(sx)
        else:

            sx = self.em(sx)

            sx += self.cv(sx)
            sx = self.layer_nor(sx)
            sx += self.feed(sx)
            sx = self.layer_nor(sx)
            sx += self.lora(sx)
            out = self.out_layer(sx)
        return out

    def load_lora(self, lora_name):
        self.lora.load_dict(paddle.load(lora_name))

    def save_lora(self, lora_name):
        paddle.save(self.lora.state_dict(), lora_name)


def gen_basic_data():
    seq_len = 32
    with open("fixed_couplets_in.txt", "r", encoding="utf-8") as f:
        train_data = f.readlines()

    with open("fixed_couplets_out.txt", "r", encoding="utf-8") as f:
        dev_data = f.readlines()

    train_data = [i.strip().split() for i in tqdm(train_data)]
    dev_data = [i.strip().split() for i in tqdm(dev_data)]

    train_data_list = []
    data_id_index = 0
    for i, j in tqdm(zip(train_data, dev_data)):
        one = i + ["。"] + j + list("|_{}_|".format(data_id_index))
        data_id_index += 1
        train_data_list += one
    seq_len_count = 1
    with open("train_data_list.txt", "a", encoding="utf-8") as f:

        voc = dict()
        for i in tqdm(range(0, len(train_data_list), seq_len)):
            if i > 0:
                j = i + seq_len
                one = train_data_list[i - seq_len_count:j - seq_len_count]
                seq_len_count += 1
            else:
                j = i + seq_len
                one = train_data_list[i:j]
            if len(one) == seq_len:
                f.write(str(one) + "\n")
            for k in one:
                voc[k] = ""
    del train_data_list
    del train_data
    del dev_data

    voc = ["<|pad|>"] + list(voc.keys())
    voc_dict = {k: v for v, k in enumerate(voc)}
    pd.to_pickle(voc, "voc_data.pandas_pickle")

    with open("train_data_list.txt", "r", encoding="utf-8") as f:
        train_data = f.readlines()

    train_data_list = [[voc_dict[j] for j in eval(i)] for i in tqdm(train_data)]
    pd.to_pickle(train_data_list, "train_data.pandas_pickle")


def train_data():
    voc_id = pd.read_pickle("voc_data.pandas_pickle")
    net = GPT(len(voc_id) + 1, 128, 2)
    loss_func = paddle.nn.CrossEntropyLoss(ignore_index=-1)
    opt = paddle.optimizer.Adam(learning_rate=0.0001, parameters=net.parameters())
    bar = tqdm(range(1700))
    batch_size = 1200
    data_set = pd.read_pickle("train_data.pandas_pickle")
    acc_list = []
    for epoch in bar:
        np.random.shuffle(data_set)
        for i in range(0, len(data_set), batch_size):
            j = i + batch_size

            data = paddle.to_tensor(data_set[i:j]).astype("int64")

            label = data[:, 1:]
            input_data = data[:, :-1]

            out = net(input_data)
            loss = loss_func(out.reshape([-1, out.shape[-1]]), label.reshape([-1]))
            acc = paddle.metric.accuracy(out.reshape([-1, len(voc_id) + 1]), label.reshape([-1, 1]))
            acc_list.append(acc.item())
            bar.set_description(
                "epoch___{}___step___{}_loss___{:.5f}_acc__{:.5f}__{:.5f}".format(
                    epoch, j, loss.item(),
                    np.mean(acc_list), (paddle.argmax(out, -1) == label).numpy().mean()))
            opt.clear_grad()
            loss.backward()
            opt.step()

        paddle.save(net.state_dict(), "model_{}.paddle".format(epoch))


def train_data_lora(lora_one_name):
    voc_id = pd.read_pickle("voc_data.pandas_pickle")
    net = GPT(len(voc_id) + 1, 128, 2, True)
    net.load_dict(paddle.load("basic.paddle"))
    loss_func = paddle.nn.CrossEntropyLoss(ignore_index=-1)
    opt = paddle.optimizer.Adam(learning_rate=0.00001, parameters=net.parameters())
    bar = tqdm(range(1700))
    batch_size = 1200
    data_set = pd.read_pickle("train_data.pandas_pickle")

    # plt.ion()
    acc_list = []
    for epoch in bar:
        np.random.shuffle(data_set)
        for i in range(0, len(data_set), batch_size):
            j = i + batch_size

            data = paddle.to_tensor(data_set[i:j]).astype("int64")

            label = data[:, -1:]
            input_data = data[:, :-1]

            out = net(input_data)
            loss = loss_func(out.reshape([-1, out.shape[-1]]), label.reshape([-1]))
            acc = paddle.metric.accuracy(out.reshape([-1, len(voc_id) + 1]), label.reshape([-1, 1]))
            acc_list.append(acc.item())
            bar.set_description(
                "epoch___{}___step___{}_loss___{:.5f}_acc__{:.5f}__{:.5f}".format(epoch, j, loss.item(),
                                                                                  np.mean(acc_list),
                                                                                  (paddle.argmax(out, -1) ==
                                                                                   label).numpy().mean()))
            opt.clear_grad()
            loss.backward()
            opt.step()

        paddle.save(net.lora.state_dict(), "model_{}.paddle".format(lora_one_name))


if __name__ == '__main__':
    # gen_basic_data()
    train_data()
    # net = CvFoBlock(256, 2,8)
    # net(paddle.randn([3, 5, 256]))
    # eval_data()

解析代码

该代码定义了一个GPT模型,其中包括了三个子模块:FeedForward、Attention和GPT。

FeedForward模块是一个前馈神经网络,用于对输入进行非线性变换。

Attention模块实现了多头注意力机制,用于计算输入的注意力权重。

GPT模块是整个模型的主体,包括了嵌入层、注意力层、前馈层和输出层。它将输入通过嵌入层得到词向量表示,然后通过注意力层和前馈层进行特征提取和转换,最后通过输出层得到最终的预测结果。在其中还包含了LayerNorm层用于归一化输入。

模型的前向传播过程中根据lora_flag标志来决定是否加载预训练的lora模型。如果需要加载lora模型,则在前向传播过程中先进行一次运算,并将结果与输入相加,再进行后续的层运算。最后得到的输出结果经过线性变换得到预测结果。

该模型还提供了加载和保存lora模型的方法,用于在训练过程中保存和加载预训练的lora模型。

你可能感兴趣的:(gpt)