- Deepoc大模型重构核工业智能基座:混合增强架构与安全增强决策技术
Deepoch
人工智能创业创新科技自动化学习
面向复杂系统的高可靠AI赋能体系构建Deepoc大模型通过多维度技术突破,显著提升核工业知识处理与决策可靠性。经核能行业验证,其生成内容可验证性提升68%,关键参数失真率99.999%)。动态可信度评估系统:基于贝叶斯神经网络实时量化模型不确定性,为关键决策提供置信度评分(如堆芯功率控制置信区间±0.05%)。二、核心突破:物理增强型智能算法创新机理与数据双驱动建模神经微分方程求解器:将中子输运方
- 2025AI智能体平台,10个Agent智能体开发平台推荐
cczixun
人工智能智能体大数据安全
1、扣子(Coze)开发平台字节跳动推出的AI智能体开发平台,用户无需编程基础,通过拖拽和配置即可快速创建聊天机器人,并部署到豆包、飞书、抖音、微信等多个平台。平台提供超过1万+的插件,内置豆包・Functioncall32k、通义千问-Max8k等多个大模型,还具备知识库、数据库、图像流等功能。2、通义千问Agent平台阿里巴巴基于通义千问大模型打造的智能体开发框架,以强大的多模态能力和工具集成
- 对标ChatGPT,「文心一言」今日亮相!AI人机时代来临,未来在何方?
AI医学
本文由「AI医学er」提供医海无涯,AI同舟。关注我们,助力高效科研。3月15日,OpenAI公布了其大型语言模型的最新版本——GPT-4。3月16日,百度文心一言人工智能聊天机器人正式上线。一个时代开始了。OpenAI在官网表示,GPT-4是一个能接受图像和文本输入,并输出文本的多模态模型,是OpenAI在扩展深度学习方面的最新成果。此前的ChatGPT,只能通过向其输入文字提问才能生成文字回答
- 旋转目标检测:Deep Spatial Feature Transformation for Oriented Aerial Object Detection【方法解析】
沉浸式AI
《AI与SLAM论文解析》人工智能计算机视觉旋转目标检测
DeepSpatialFeatureTransformationforOrientedAerialObjectDetection目录DeepSpatialFeatureTransformationforOrientedAerialObjectDetection摘要关键词引言相关工作旋转对齐模块特征对齐方法旋转对齐模块特征选择模块摘要航空图像中的目标检测在计算机视觉领域引起了广泛关注。不同于自然图像
- 章节十四:乱序中的“指挥家”:堆排序奥义 - (堆排序 / Heap Sort)
杨小扩
常用算法详解算法
各位老铁,阿扩又来啦!前面我们聊了各种数据结构和算法,从基础的排序查找,到复杂的图算法、动态规划,再到巧妙的Trie树和布隆过滤器。今天,我们要再次回到排序算法的舞台,但这次的主角,可不是简单的“冒泡”或“选择”,而是一位在乱序中能高效组织、精准定位的“指挥家”——堆排序(HeapSort)!你可能听说过快速排序、归并排序,它们都是O(NlogN)级别的排序算法。堆排序也同样拥有这个优秀的性能,而
- 万界星空科技锂电池MES解决方案
万界星空科技的锂电池MES(制造执行系统)解决方案专注于提升锂电池生产过程的智能化、自动化和精细化管理水平,针对行业的高复杂性和严格的质量追溯需求,提供了一套全面的功能模块和定制化服务。以下是其核心内容及优势:一、核心功能模块1.生产调度与计划管理•根据订单需求、产能状况和物料供应,自动生成动态生产计划,支持基于优先级或资源的排程算法,实时调整以应对变化,确保高效执行。•集成APS(高级计划排程系
- 。。。。看毛片算法_(:з」∠)_ /FZU - 2275
StrongerIrene
#日常刷题
参考1:链接“这个是我当时学的时候学长推荐我看的”(然而太长了。。。。。我看不懂……最后好难受_(:з」∠)_饭也不要吃的)然后看了精简版的...然后就明白了_(:з」∠)_【有关解释】(part)(1)模式串向右移动的位数为:失配字符所在位置-失配字符对应的next值next数组各值的含义:代表当前字符之前的字符串中,有多大长度的相同前缀后缀。此也意味着在某个字符失配时,该字符对应的next值会
- 【AI论文】EmbRACE-3K: 复杂环境中的具身推理与行为研究
摘要:近期先进的视觉语言模型(Vision-LanguageModels,VLMs)在被动、离线的图像和视频理解任务中展现出了卓越的性能。然而,在具身场景中,这些模型的有效性仍较为有限。具身场景要求在线交互和主动的场景理解,在此类场景中,智能体以第一人称视角感知环境,且每一次动作都会动态地影响后续的观察结果。即便是像GPT-4o、Claude3.5Sonnet和Gemini2.5Pro这样的先进模
- 客流分析核心算法 trajectory_event_analyzer数据结构
风吹落叶花飘荡
python后端算法数据结构网络
客流分析核心算法trajectory_event_analyzerV4.py数据结构文章目录客流分析核心算法trajectory_event_analyzerV4.py数据结构一、算法描述1、描述2、客流分析模块trajectory_event_analyzerV4.py解析1.分层统计:2.状态一致性检查:3.区域状态统计:4、客流状态统计5.ReID集成:6.数据清理机制:二、核心模块解释1、
- 图像处理中ct图的通道是多少_医疗图像处理:从形成到解读
weixin_39761822
图像处理中ct图的通道是多少
来源:ADI作者:AntonPatyuchenko上个世纪在医疗成像领域实现的技术进步为非侵入诊断创造了前所未有的机会,并确立医疗成像作为医疗健康系统的组成部分。代表这些进步的主要创新领域之一是医疗图像处理的跨学科领域。这一快速发展的领域涉及从原始数据采集到数字图像传输的广泛流程,而这些流程是现代医疗成像系统中完整数据流的基础。如今,这些系统在空间和强度维度方面提供越来越高的分辨率,以及更快的采集
- 大学专业科普 | 计算智能、信息学与大数据
鸭鸭鸭进京赶烤
大数据
一、专业背景随着信息技术的飞速发展,数据的产生速度呈爆炸式增长,传统数据处理技术已经无法满足如此庞大的数据量和复杂的数据类型,大数据专业应运而生,旨在培养能够应对大数据挑战的专业人才。二、主要课程内容数学基础课程高等数学、概率论与数理统计、线性代数是大数据分析的核心数学基础,为数据处理、算法优化和模型构建提供必要的理论支持。计算机基础课程数据结构与算法、计算机网络、操作系统是大数据技术的重要支撑,
- 大学专业科普 | 人工智能、物联网和云计算技术
鸭鸭鸭进京赶烤
人工智能物联网云计算5G信号处理信息与通信网络
一、专业概述人工智能专业是一门融合计算机科学、数学、信息学等多学科知识的交叉学科。它旨在培养学生掌握人工智能领域的基本理论、方法和技能,以应对人工智能在各个领域的应用需求和发展挑战。二、主要课程基础课程:包括高等数学、线性代数、概率论与数理统计、离散数学等数学基础课程,为人工智能算法提供理论支撑;以及数据结构、算法设计与分析、计算机组成原理、操作系统、计算机网络等计算机科学基础课程,帮助学生理解人
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- docker容器连接Android设备,通过ADB连接到Docker容器中的USB Android设备
黄文瀚
我创建了一个包含AndroidSDK的Docker镜像,并试图在运行此图像的容器中公开我的Android手机.所以我使用了–privileged标志并安装了USB设备,如下所示:$dockerrun--privileged-v/dev/bus/usb:/dev/bus/usb-d-Pmy-android:0.0.1但是,当我运行ADB设备时,它没有显示USB设备:ubuntu@d56b666be4
- Pad Token技术原理与实现指南
Takoony
AI
目录概述理论基础:第一性原理分析技术实现机制工程最佳实践性能优化策略常见问题与解决方案技术发展趋势附录1.概述1.1文档目的本文档旨在深入阐述深度学习中PadToken的技术原理、实现机制及工程应用,为算法工程师提供全面的理论指导和实践参考。1.2适用范围自然语言处理模型开发序列数据批处理优化深度学习系统架构设计高性能计算资源管理1.3核心问题研究问题:为什么深度学习模型需要将变长序列统一到固定长
- CR/DR多功能检测模体,助力提升影像诊断水平
gaoshengdainzi
CR/DR多功能检测模体
CR/DR多功能检测模体是医学影像质量控制领域不可或缺的专业工具,专为评估计算机X线摄影(ComputedRadiography,CR)和数字X线摄影(DigitalRadiography,DR)系统的成像性能而设计。在精准医疗时代,影像设备的稳定性和图像质量的可靠性直接影响临床诊断的准确性。该模体通过集成多种测试模块,可全面检测设备的空间分辨率、对比度灵敏度、均匀性、线性度等关键参数,确保成像系
- 淘宝商城四面(附架构面试专题)及B2C商城架构项目实战分享!
风平浪静如码
一面主要问题如下(主要注重基础,问得很深很广,压力面试):首先自我介绍数据结构算法的基本问题,如排序算法,二叉树遍历,后序遍历非递归,图的最短路径问题对一个数组进行绝对值排序的算法java中hashmap的底层实现java中垃圾回收机制GC原理等介绍自己的项目,数据库中用到的数据结构数据模型,死锁的概念(问的应该是数据库的死锁),如何避免死锁?乐观锁和悲观锁?一致性hash算法项目中业务对象的关联
- TensorFlow为AI人工智能航空航天领域带来变革
AI原生应用开发
人工智能tensorflowpythonai
TensorFlow为AI人工智能航空航天领域带来变革关键词:TensorFlow、人工智能、航空航天、机器学习、深度学习、神经网络、自主系统摘要:本文探讨了TensorFlow这一强大的机器学习框架如何推动航空航天领域的创新。我们将从基础概念入手,逐步深入分析TensorFlow在航天器导航、卫星图像处理、飞行器自主决策等关键应用场景中的实现原理。通过实际代码示例和架构图解,展示TensorFl
- 【华为OD机试真题 Python语言】135、采样过滤 | 机试真题+思路参考+代码解析
KFickle
华为odpython华为华为OD机试真题采样过滤
文章目录一、题目题目描述输入输出样例1二、思路参考三、代码参考作者:鲨鱼狼臧个人博客首页:鲨鱼狼臧专栏介绍:2024华为OD机试真题,使用Python进行解答,专栏每篇文章都包括真题,思路参考,代码分析,思路参考超过百字,欢迎大家订阅学习一、题目题目描述在做物理实验时,为了计算物体移动的速率,通过相机等工具周期性的采样物体移动距离。由于工具故障,采样数据存在误差甚至相误的情况。需要通过一个算法过滤
- MATLAB在工业缺陷检测中的应用
本文还有配套的精品资源,点击获取简介:缺陷检测、伤痕检测、瑕疵检测和划痕检测是工业自动化和质量控制中至关重要的环节,MATLAB作为一种高级编程环境,在图像处理和计算机视觉任务中扮演了重要角色。本文详细介绍了如何使用MATLAB实现这些检测过程,包括图像采集、预处理、特征提取和决策制定等步骤。通过介绍内置图像处理工具箱中的应用,色彩转换技术、边缘检测算法以及形态学操作等方法,我们阐述了如何识别和处
- 10、区块链技术及其应用
吃瓜不吐籽595
解密《质量4.0与数字化转型》区块链比特币去中心化
区块链技术及其应用1.区块链简介区块链技术作为一种分布式账本,近年来受到了广泛关注。它不仅仅是一种技术革新,更是一种思维模式的转变。区块链的核心在于其去中心化、不可篡改和透明的特性,使得它在多个领域都有广泛的应用前景。区块链的基本概念区块链本质上是一个共享的、不可变的数字账本,记录了所有参与者之间的交易。每个区块包含了一系列交易记录,并通过加密算法与前一个区块相连,形成一条链。这种结构确保了数据的
- 学习嵌入式第六天
缺口212
学习算法数据结构
一.数组的排序1.冒泡排序冒泡排序是一种简单的排序算法,其核心思想是通过重复遍历待排序的数组,每次比较相邻的两个元素,如果它们的顺序错误就把它们交换过来,直到没有元素需要交换为止。从数组的第一个元素开始,依次比较相邻的两个元素。如果前一个元素大于后一个元素,则交换这两个元素。每完成一轮遍历,最大的元素会“冒泡”到数组的末尾。之后缩小遍历范围(不再考虑已排好的末尾元素),重复上述过程,直到所有元素有
- 华为OD机试2025B卷真题题库目录|机考题库 + 算法考点详解(Python/JS/C/C++)
专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。2025年5月12日,华为官方已经将华为OD机试(A卷)切换为B卷。目前正在考的是B卷,按照华为OD往常的操作,B卷题目是由往
- 时间轮算法
据说是复杂度O(1)的牛逼算法,所以抽时间学习学习。现在要实现一个定时器,这个定时器控制很多任务。该怎么做呢?第一反应是任务做成一个队列,属性有个时间,每次计时后将该属性减1,到0的时候就执行。这种方式可行,但是效率不高,因为每次都要遍历所有任务,所以时间复杂度是O(N)。优化的方法是什么呢?有点类似哈希表,增加一个时间队列,同时将任务预先排放在一个时间队列中。如果是100秒的时间范围,那么就是1
- Orange3实战教程:图像分析---图像嵌入
err2008
Orange3实战教程数据挖掘神经网络自然语言处理机器学习计算机视觉深度学习orange3中文版
图像嵌入通过深度神经网络实现图像嵌入。输入图像:图像列表。输出嵌入向量:用数字向量表示的图像。跳过的图像:未计算嵌入向量的图像列表。图像嵌入功能读取图像并将其上传至远程服务器或本地计算。深度学习模型用于为每张图像计算特征向量。该功能返回一个增强的数据表,包含额外的列(图像描述符)。图像可以通过导入图像小部件导入,也可以通过电子表格中的图像路径导入。在这种情况下,包含图像路径的列需要一个三行表头,第
- 【代码】Matlab鸟瞰图函数
用matlab把图像转化为鸟瞰图代码clcclearcloseallI=imread('road.png');figure(1)imshow(I)bevSensor=load('birdsEyeConfig');birdsEyeImage=transformImage(bevSensor.birdsEyeConfig,I);figure(2)imshow(birdsEyeImage)效果
- 【前端必备】VSCode实用图片预览插件
Guang_how927
前端vscode编辑器前端插件图像处理
ImagepreviewImagePreview插件功能概述ImagePreview插件通常用于在网页或应用程序中提供图片的预览功能,允许用户快速查看缩略图或放大后的图像,而无需打开单独的页面或下载文件。核心功能缩略图生成自动将上传的大尺寸图片转换为缩略图,便于在列表或画廊中展示。支持自定义缩略图尺寸和质量。鼠标悬停预览当用户将鼠标悬停在缩略图上时,显示放大版的图像。通常支持调整预览窗口的位置和大
- 一文看懂NTP协议
Neolock
网络协议网络协议ntp网络
最近碰到一个NTP协议相关的题,卡了很久,才发现一直在用的NTP协议完全不了解他的原理,遂学习并总结一下1.NTP概述NTP(NetworkTimeProtocol)是一种用于同步计算机系统时钟的网络协议,旨在通过分层架构和精密算法,将设备时间同步至全球协调时间(UTC),精度可达毫秒甚至微秒级。其核心目标是通过减少时钟偏差和网络延迟影响,确保分布式系统的时间一致性2.NTP分层架构(Stratu
- GDPR/等保2.0合规指南:企业商城系统必备的10大安全机制
万米商云
安全数据库网络
在数字经济全球化与数据主权博弈的双重背景下,企业商城系统作为承载用户隐私、交易数据与商业机密的核心载体,需同时满足欧盟《通用数据保护条例》(GDPR)与中国《网络安全等级保护2.0》的复合合规要求。本文从技术实现视角,解析企业商城系统必备的10大安全机制及其实施要点。一、全链路加密传输1、HTTPS强制部署采用OV/EV型SSL证书实现TLS1.3协议升级,支持国际RSA2048位或国密SM2算法
- Hadoop与图像识别与处理
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Hadoop与图像识别与处理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在大数据时代,数据的爆炸性增长对数据处理技术提出了新的挑战。图像数据作为一种重要的数据形式,其处理和分析在许多领域中具有重要意义,如医疗影像分析、自动驾驶、安防监控等。然而,传统的图像处理方法在面对海量图像数据时显得力不从心。Hadoop作为一种分
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟