车辆运动学方程推导和代码实现

文章目录

    • 1. 运动学方程
    • 2. 模型实现

1. 运动学方程

自行车模型(Bicycle Model)是车辆数字化模型中最常见的一种运动学模型。其除了可以反映车辆的一些基础特性外,更重要的是简单易用。通常情况下我们会把车辆模型简化为二自由度的自行车模型。

自行车模型主要基于以下假设:

  • 车辆是在一个二维平面上运动,不考虑车辆垂直平面的(Z轴)方向上的移动。
  • 车辆左右两个轮胎的运动可以合并为一个轮胎来描述,即假设车辆左右轮胎在任意时刻都拥有相同(或者近乎相同)的转向角度和速度。
  • 车辆处于低速运动,可以忽略前后轴载荷的偏移。
  • 车辆整体是刚体结构。

一般情况下,我们可以将车辆运动学模型简化为如下形式:

车辆运动学方程推导和代码实现_第1张图片

  • δ f \delta_f δf:前轮转角
  • δ r \delta_r δr:后轮转角
  • β \beta β:质心侧偏角,即质心速度与车身坐标系 X X X轴的夹角
  • φ \varphi φ:横摆角,即车的轴线与 X X X轴的夹角
  • β + φ \beta+\varphi β+φ:航向角
  • v v v:质心速度
  • O O O:速度瞬心
  • C C C:质心
  • L f L_f Lf:质心 C C C到前轴距离
  • L r L_r Lr:质心 C C C到后轴距离
  • L L L:轴距, L = L f + L r L=L_f+L_r L=Lf+Lr

我们对质心速度 v v v进行矢量分解,如上图中的 X ˙ \dot{X} X˙ Y ˙ \dot{Y} Y˙所示,可以得到下式子 ( 1 ) (1) (1) ( 2 ) (2) (2),根据理论力学刚体角速度公式可得公式 ( 3 ) (3) (3)。由此得到单车模型下的车辆运动学微分模型为
X ˙ = v c o s ( β + φ ) (1) \dot{X} = vcos(\beta+\varphi) \tag{1} X˙=vcos(β+φ)(1)

Y ˙ = v s i n ( β + φ ) (2) \dot{Y} = vsin(\beta+\varphi) \tag{2} Y˙=vsin(β+φ)(2)

φ ˙ = v R (3) \dot{\varphi} = \frac{v}{R} \tag{3} φ˙=Rv(3)

:一个刚体的角速度 = 线速度/线速度到速度瞬心的距离

根据图中几何关系和正弦定理可知:
L f s i n ( δ f − β ) = R s i n ( π 2 − δ f ) (4) \frac{L_f}{sin(\delta_f - \beta)} = \frac{R}{sin(\frac{\pi}{2} - \delta_f)} \tag{4} sin(δfβ)Lf=sin(2πδf)R(4)

L r s i n ( δ r + β ) = R s i n ( π 2 − δ r ) (5) \frac{L_r}{sin(\delta_r + \beta)} = \frac{R}{sin(\frac{\pi}{2} - \delta_r)} \tag{5} sin(δr+β)Lr=sin(2πδr)R(5)

由上式展开可得
L f R = s i n δ f c o s β − c o s δ f s i n β c o s δ f = t a n δ f c o s β − s i n β (6) \frac{L_f}{R} = \frac{sin\delta_f cos\beta - cos\delta_f sin\beta}{cos\delta_f} = tan\delta_fcos\beta - sin\beta\tag{6} RLf=cosδfsinδfcosβcosδfsinβ=tanδfcosβsinβ(6)

L r R = s i n δ r c o s β + c o s δ r s i n β c o s δ r = t a n δ r c o s β + s i n β (7) \frac{L_r}{R} = \frac{sin\delta_r cos\beta + cos\delta_r sin\beta}{cos\delta_r} = tan\delta_rcos\beta+sin\beta \tag{7} RLr=cosδrsinδrcosβ+cosδrsinβ=tanδrcosβ+sinβ(7)

由载荷的影响,质心 C C C位置会发生变化,导致 L f L_f Lf L r L_r Lr的长度发生变化,但是由于 L = l f + L r L = l_f +L_r L=lf+Lr是不变的,因此由式子 ( 6 ) ( 7 ) (6)(7) (6)(7)可得
L f + L r R = L R = ( t a n δ f + t a n δ r ) c o s β (8) \frac{L_f + L_r}{R} = \frac{L}{R} = (tan\delta_f + tan\delta_r)cos\beta \tag{8} RLf+Lr=RL=(tanδf+tanδr)cosβ(8)
( 3 ) (3) (3) ( 8 ) (8) (8)可得
φ ˙ = v R = v ( t a n δ f + t a n δ r ) c o s β L (9) \dot{\varphi} = \frac{v}{R} =\frac{v(tan\delta_f + tan\delta_r)cos\beta}{L} \tag{9} φ˙=Rv=Lv(tanδf+tanδr)cosβ(9)
由于低速条件下,我们可以假设车辆不会发生侧向滑动(漂移),此时我们可以将 v y ≈ 0 v_y \approx 0 vy0,因此 β ≈ 0 \beta \approx 0 β0,则横摆角 φ \varphi φ约等于航向角 φ + β \varphi + \beta φ+β 。又由于大部分车辆不具备后轮转向的功能,因此我们可以假设后轮转角 δ r ≈ 0 \delta_r\approx0 δr0,因此基于我们假设的前提下的运动学微分方程化简为
X ˙ = v c o s φ Y ˙ = v s i n φ φ ˙ = v t a n δ f L (10) \dot{X} = vcos\varphi \\ \dot{Y} = vsin\varphi \tag{10} \\ \dot{\varphi} = \frac{vtan\delta_f}{L} X˙=vcosφY˙=vsinφφ˙=Lvtanδf(10)

2. 模型实现

python代码如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import math
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera


class Vehicle:
    def __init__(self,
                 x=0.0,
                 y=0.0,
                 yaw=0.0,
                 v=0.0,
                 dt=0.1,
                 l=3.0):
        self.steer = 0
        self.x = x
        self.y = y
        self.yaw = yaw
        self.v = v
        self.dt = dt
        self.L = l  # 轴距
        self.x_front = x + l * math.cos(yaw)
        self.y_front = y + l * math.sin(yaw)

    def update(self, a, delta, max_steer=np.pi):
        delta = np.clip(delta, -max_steer, max_steer)
        self.steer = delta

        self.x = self.x + self.v * math.cos(self.yaw) * self.dt
        self.y = self.y + self.v * math.sin(self.yaw) * self.dt
        self.yaw = self.yaw + self.v / self.L * math.tan(delta) * self.dt

        self.v = self.v + a * self.dt
        self.x_front = self.x + self.L * math.cos(self.yaw)
        self.y_front = self.y + self.L * math.sin(self.yaw)


class VehicleInfo:
    # Vehicle parameter
    L = 3.0  #轴距
    W = 2.0  #宽度
    LF = 3.8  #后轴中心到车头距离
    LB = 0.8  #后轴中心到车尾距离
    MAX_STEER = 0.6  # 最大前轮转角
    TR = 0.5  # 轮子半径
    TW = 0.5  # 轮子宽度
    WD = W  #轮距
    LENGTH = LB + LF  # 车辆长度

def draw_trailer(x, y, yaw, steer, ax, vehicle_info=VehicleInfo, color='black'):
    vehicle_outline = np.array(
        [[-vehicle_info.LB, vehicle_info.LF, vehicle_info.LF, -vehicle_info.LB, -vehicle_info.LB],
         [vehicle_info.W / 2, vehicle_info.W / 2, -vehicle_info.W / 2, -vehicle_info.W / 2, vehicle_info.W / 2]])

    wheel = np.array([[-vehicle_info.TR, vehicle_info.TR, vehicle_info.TR, -vehicle_info.TR, -vehicle_info.TR],
                      [vehicle_info.TW / 2, vehicle_info.TW / 2, -vehicle_info.TW / 2, -vehicle_info.TW / 2, vehicle_info.TW / 2]])

    rr_wheel = wheel.copy() #右后轮
    rl_wheel = wheel.copy() #左后轮
    fr_wheel = wheel.copy() #右前轮
    fl_wheel = wheel.copy() #左前轮
    rr_wheel[1,:] += vehicle_info.WD/2
    rl_wheel[1,:] -= vehicle_info.WD/2

    #方向盘旋转
    rot1 = np.array([[np.cos(steer), -np.sin(steer)],
                     [np.sin(steer), np.cos(steer)]])
    #yaw旋转矩阵
    rot2 = np.array([[np.cos(yaw), -np.sin(yaw)],
                     [np.sin(yaw), np.cos(yaw)]])
    fr_wheel = np.dot(rot1, fr_wheel)
    fl_wheel = np.dot(rot1, fl_wheel)
    fr_wheel += np.array([[vehicle_info.L], [-vehicle_info.WD / 2]])
    fl_wheel += np.array([[vehicle_info.L], [vehicle_info.WD / 2]])

    fr_wheel = np.dot(rot2, fr_wheel)
    fr_wheel[0, :] += x
    fr_wheel[1, :] += y
    fl_wheel = np.dot(rot2, fl_wheel)
    fl_wheel[0, :] += x
    fl_wheel[1, :] += y
    rr_wheel = np.dot(rot2, rr_wheel)
    rr_wheel[0, :] += x
    rr_wheel[1, :] += y
    rl_wheel = np.dot(rot2, rl_wheel)
    rl_wheel[0, :] += x
    rl_wheel[1, :] += y
    vehicle_outline = np.dot(rot2, vehicle_outline)
    vehicle_outline[0, :] += x
    vehicle_outline[1, :] += y

    ax.plot(fr_wheel[0, :], fr_wheel[1, :], color)
    ax.plot(rr_wheel[0, :], rr_wheel[1, :], color)
    ax.plot(fl_wheel[0, :], fl_wheel[1, :], color)
    ax.plot(rl_wheel[0, :], rl_wheel[1, :], color)

    ax.plot(vehicle_outline[0, :], vehicle_outline[1, :], color)
    # ax.axis('equal')



if __name__ == "__main__":

    vehicle = Vehicle(x=0.0,
                      y=0.0,
                      yaw=0,
                      v=0.0,
                      dt=0.1,
                      l=VehicleInfo.L)
    vehicle.v = 1
    trajectory_x = []
    trajectory_y = []
    fig = plt.figure()
    # 保存动图用
    # camera = Camera(fig)
    for i in range(600):
        plt.cla()
        plt.gca().set_aspect('equal', adjustable='box')
        vehicle.update(0, np.pi / 10)
        draw_trailer(vehicle.x, vehicle.y, vehicle.yaw, vehicle.steer, plt)
        trajectory_x.append(vehicle.x)
        trajectory_y.append(vehicle.y)
        plt.plot(trajectory_x, trajectory_y, 'blue')
        plt.xlim(-12, 12)
        plt.ylim(-2.5, 21)
        plt.pause(0.001)
    #     camera.snap()
    # animation = camera.animate(interval=5)
    # animation.save('trajectory.gif')

运行结果如下:

文章首发公众号:iDoitnow如果喜欢话,可以关注一下

你可能感兴趣的:(自动驾驶-控制,自动驾驶-控制)