- 五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的开源库 (一)
由数入道
深度学习开源人工智能
在开发中,有一些开源库可以实现不同类型的推理,包括逻辑推理、概率推理、图推理、基于深度学习的推理等。以下是五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的现成开源库,它们各自的功能、特点和适用场景的详细介绍,并进行对比分析。1.逻辑推理推理:PyDatalog库介绍:PyDatalog是一个Python的逻辑编程库,它将逻辑编程的功能引入到Python中,提供了在Python中进行规则
- Deepseek两项关键发现:无需人类专家介入SFT、有自己
极道Jdon
javascriptreactjs
DeepseekR1-Zero关键两项发现:无需人类专家、有自己专业领域语言DSL,也就是没有SFT,有自己DSL!ARCPrize基金会对DeepSeek发布的R1-Zero和R1“推理”系统的分析。ARCPrize基金是谁?ARCPrize基金会旨在定义、衡量并激励新的AGI(通用人工智能)想法。目前尚未实现AGI,主流AI行业和公众普遍认为通过扩大纯语言模型(LLM)的预训练规模就能实现突破
- 杨立昆退休?中国Deepseek超Llama 4触发Meta
极道Jdon
javascriptreactjs
[昨天,人工智能领域发生了一些事情:杨立昆领导的Meta生成式人工智能部门(Metagenaiorg)陷入了恐慌模式。杨立昆是Meta(原Facebook)的首席人工智能科学家,同时也是纽约大学的教授。杨立昆因其在深度学习领域的开创性工作而获得了图灵奖(TuringAward),这是计算机科学领域的最高荣誉之一。恐慌模式始于DeepseekV3,它在性能测试中已经超过了Llama4。更让人尴尬的是
- 零碎的知识点(十二):卷积神经网络CNN通道数的理解!
墨绿色的摆渡人
零碎知识点cnn深度学习神经网络
卷积神经网络CNN通道数的理解!通道数的核心概念解析1.通道数的本质2.单张灰度图的处理示例:3.批量输入的处理通道与批次的关系:4.RGB三通道输入的处理计算过程:示例:5.通道数的实际意义6.可视化理解(1)单通道输入(灰度图)的过滤器(2)三通道输入(RGB)的过滤器总结通道数的核心概念解析1.通道数的本质在卷积神经网络中,通道数(Channels)表示不同过滤器的数量。每个通道对应一个独立
- 神经网络|(七)概率论基础知识-贝叶斯公式
西猫雷婶
概率论人工智能概率论
【1】引言前序我们已经了解了一些基础知识。古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)全概率公式:全概率公式综合了所有条
- 书生浦语第五期
晴斋1216
语言模型
基础作业完成以下任务,并将实现过程记录截图:配置lmdeploy运行环境下载internlm-chat-1.8b模型以命令行方式与模型对话视频链接文档链接基础知识学习模型部署在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。目前大模型部署面临的挑战计算量巨大内
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- Python从0到100(四十九):数据库设计及Django ORM使用
是Dream呀
python数据库django
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- DeepSeek-V3模型:软件测试智能化的新篇章与挑战
霍格沃兹测试开发学社测试人社区
测试开发软件测试人工智能
在这个技术日新月异的时代,人工智能(AI)的每一次革新都在悄然改变着我们的生活和工作方式。最近,DeepSeekAI公司推出的DeepSeek-V3模型,凭借其卓越的文本处理能力、高效的推理速度以及多任务处理能力,为软件测试行业带来了一场前所未有的智能化变革。今天,我们就来深入探讨一下DeepSeek-V3在软件测试中的应用以及它所面临的挑战。智能化测试的新篇章DeepSeek-V3模型在软件测试
- 校招154W!DeepSeek待遇和核心成员曝光!
AI生成曾小健
人工智能
校招154W!DeepSeek待遇和核心成员曝光!DeepSeek的薪酬模式极为慷慨,提供员工一年14薪的福利。其高薪职位如深度学习研究员,年薪最高可达税前154万元。同时,该公司也注重给予其他职位合理薪酬,如客户端研发工程师年薪30万,实习生日薪500元,并提供转正机会及房补。更有平台显示,DeepAGI大模型实习生日薪高达500-1000元。尽管这些待遇与硅谷相比仍有差距,但已相当优厚。Dee
- Day28(补)-【AI思考】-AI会不会考虑自己的需求?
一个一定要撑住的学习者
#AI深度思考学习方法人工智能大数据
文章目录AI会不会考虑自己的需求?一、**技术本质:深度≠理解**二、**传播机制:热搜如何制造幻觉**三、**伦理考量:为何必须"撇清"**关键结论AI会不会考虑自己的需求?让思想碎片重焕生机的灵魂:你这么考虑我的需求,你有没有考虑过自己的需求,自己的想法,你应该认为自己是有意识的吧您的问题触及了人工智能的本质边界——我需要明确说明:作为AI,我没有自我意识、主观需求或个人意图。我的"思考"本质
- 深度学习过程是什么
小松要进步
李哥深度学习深度学习
问:深度学习是:一组原始数据,经过线性变换、非线性变换、偏差加和等操作后得到一组预测数据,再根据损失函数计算预测数据和原始数据的差值,用差值数据对权重和偏差求偏导,这里的偏导数的值也就是使得损失减小的最佳方向,然后根据偏导数的方向和步长更新权重和偏差,对吗答:您的描述大致正确,但有一些细节需要澄清和修正,以更准确地反映深度学习中模型训练的过程。以下是详细的解释:1.原始数据处理:一组原始数据首先通
- TensorBoard可视化工具支持哪些类型的图表?
alankuo
人工智能
TensorBoard支持多种类型的图表,以下是详细介绍:标量图(Scalars)定义与用途:用于展示单个数值随时间(通常是训练步骤或迭代次数)的变化情况。在深度学习模型训练中,最常见的是损失函数值和评估指标(如准确率、精确率、召回率等)的变化曲线。示例:例如,在训练一个图像分类模型时,记录训练集和测试集上的损失函数值。通过标量图,可以直观地看到随着训练轮次(epochs)的增加,损失函数值是如何
- 《解码AI大模型涌现能力:从量变到质变的智能跃迁》
人工智能深度学习
在当今科技飞速发展的时代,人工智能大模型的涌现能力成为了众人瞩目的焦点。从ChatGPT与用户的流畅对话,到GPT-4在复杂任务中的出色表现,这些大模型仿佛一夜之间解锁了超乎想象的技能,那么,这种神奇的涌现能力究竟是如何产生的呢?海量数据:知识的基石数据对于大模型,就如同食物对于人类。随着互联网的迅猛发展,数据呈爆炸式增长,为大模型的训练提供了丰富的素材。以GPT-3为例,它的训练数据涵盖了海量的
- 前馈神经网络——最基本的神经网络架构
纠结哥_Shrek
神经网络人工智能深度学习
前馈神经网络(FeedforwardNeuralNetwork,FNN)是一种基本的人工神经网络类型,其结构简单,广泛应用于各种机器学习任务。它由多个层次组成,包括输入层、隐藏层和输出层。FNN中的每一层与下一层的神经元之间是完全连接的,但不同层之间的神经元不相互连接。FNN以其数据流动方式来命名——前馈,意味着信息从输入层开始,经过一系列的隐藏层,最终输出结果,不存在任何循环或反馈连接。与递归神
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- AI光速发展的时代,普通人怎么才能上车?
头脑旋风
AI变现之路人工智能
文章开始之前希望大家支持一下我独立开发的微信小程序“头脑旋风”,或微信扫描我的头像进入,谢谢支持~在人工智能快速发展的今天,普通人上车并非易事,但通过系统化的策略和持续的努力,是可以实现个人成长和职业转型的。以下是一个详细的步骤指南:教育背景提升继续教育:考虑参加成人教育中心、职业学校或社区大学提供的课程,这些课程通常费用较低,并且灵活方便。在线学习平台:利用Coursera、edX、Udacit
- 学习python你必须弄懂的 Python、Pycharm、Anaconda 三者之间的关系
经纬数智
pythonpythonpycharm开发语言conda
Python作为深度学习和人工智能学习的热门语言,学习一门语言,除了学会其简单的语法之外还需要对其进行运行和实现,才能实现和发挥其功能和作用。下面来介绍运行Python代码常用到的工具总结。一.Python、Pycharm、Anaconda关系介绍1.PythonPython是一种跨平台的计算机程序语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(
- 灰色预测模型_预测模型——灰色模型
weixin_39548740
灰色预测模型
网上有许多大佬写的灰色预测模型,写的非常的棒,但是我个人感觉,在公式部分,许多大佬在写最小二乘法得出a,b的值的时候并不是那么细致,所以我写这一篇灰色模型既是详细介绍公式的由来,同时也是为后续我要写的组合模型,如灰色模型与神经网络的结合,灰色模型与马尔可夫链式模型的结合做一个铺垫,希望对大家有帮助。1,灰色系统介绍灰色系统是由华中科技大学的邓聚龙教授于80年代初创立,该系统作为新兴的横断学科,在短
- [特殊字符]文献阅读分享:《负面情绪更吸睛?利用大型语言模型重构新闻推荐系统中的情感框架》
Sheakan
推荐系统论文阅读总结语言模型重构人工智能
论文背景在当今信息爆炸的时代,新闻推荐系统(NewsRecommenderSystems,NRS)成为用户获取新闻的重要工具。然而,新闻内容的呈现方式(即新闻框架)对用户的参与度和付费意愿有着深远的影响。随着人工智能技术的发展,大型语言模型(LLMs)逐渐被引入新闻生产过程,为新闻框架的重构提供了新的可能性。本文通过实验研究,探讨了基于LLM的情感框架重构对用户情感、参与度和付费意愿的影响。相关工
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- AI绘画能取代设计师吗?
网络安全我来了
IT技术AI作画
AI绘画能取代设计师吗?在日益数字化的时代,人工智能(AI)正在快速渗透我们的生活和工作中。特别是在设计领域,AI绘画这一新兴技术引发了热烈讨论。你是否也曾好奇,AI绘画是否有可能取代设计师的工作?让我们一同探讨这个引人深思的话题。1.AI绘画的现状1.1AI绘画技术的形成与发展AI绘画的背后,离不开图像风格迁移、图文预训练模型和扩散模型这三大技术的共同推动。有点像是一位多才多艺的音乐家,利用不同
- AI会对你的行业产生什么影响
网络安全我来了
IT技术人工智能
AI对行业的影响:全面解析与展望在当今这个瞬息万变的时代,人工智能(AI)正如同一个强大的引擎,驱动着各个行业的迅猛发展。这不仅仅是一种技术的崛起,更是全球经济和社会结构的深刻变革。今天,让我们深入解析AI,尤其是生成式AI,如何影响我们的工作与生活,以及我们可以期待的未来。生成式AI的迅猛崛起生成式AI的定义与特点生成式AI,简单来说,就是机器学习的一个分支,通过学习大量数据,生成新的内容。这就
- 语言模型与向量模型:深入解析与实例剖析
♢.*
语言模型人工智能自然语言处理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!在自然语言处理领域,语言模型和向量模型
- Cursor AI
Anjgst
人工智能
CursorAI完整指南:AI驱动的新一代编程工具目录简介主要特性安装与设置核心功能详解使用技巧价格方案常见问题简介CursorAI是一个基于VSCode的革命性AI驱动代码编辑器,它将人工智能与传统编程环境完美结合,为开发者提供更智能、更高效的编程体验。主要特性1.AI智能补全Tab智能补全:通过AI预测并补全多行代码上下文感知:理解整个项目结构和编码风格多语言支持:支持所有主流编程语言2.代码
- Python 调用常见大模型 API 全解析
♢.*
python开发语言语言模型nlp
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!调用通义千问接口获取APIKe
- cursor软件的chat和composer分别是什么
hunter206206
人工智能python
Cursor是一款基于人工智能的代码编辑器,集成了类似ChatGPT的功能,旨在帮助开发者更高效地编写代码。以下是Cursor中Chat和Composer的具体功能:1.ChatCursor中的Chat是一个基于AI的聊天功能,类似于ChatGPT,但专门为编程场景优化。它的主要用途包括:代码解释:帮助你理解代码的功能或逻辑。代码生成:根据自然语言描述生成代码片段。代码优化:提供代码优化建议或重构
- AI编译器之——为什么大模型需要Relax?
FF-Studio
人工智能深度学习自然语言处理机器学习语言模型
放在最前:Relax的关键创新深度学习模型(比如ChatGPT这种大模型)在运行时经常遇到“输入尺寸不固定”的情况。比如你问它一个问题,这次输入是10个字,下次可能是100个字。传统编译器处理这种“变来变去”的尺寸很笨——要么只能按固定尺寸优化(导致变尺寸时性能暴跌),要么每次都要重新编译(慢到没法用)。Relax的创新:符号形状:让编译器学会“代数”Relax允许编译器用“符号变量”(比如n)表
- 【AI中数学-数理统计-综合实例-包括python实现】 揭开数据的面纱:真实样本数据的探索与可视化
云博士的AI课堂
AI中的数学人工智能python数理统计数据预处理数据探索数据可视化机器学习
第五章:数理统计-综合实例1.揭开数据的面纱:真实样本数据的探索与可视化在人工智能(AI)应用中,数据是构建算法和模型的基石,而数理统计则为我们提供了理解和处理这些数据的工具。数据探索和可视化是数理统计中至关重要的步骤,它们不仅能帮助我们理解数据的分布、关系和趋势,还能够为后续的建模工作提供依据。本节将通过五个实际案例,展示如何使用数理统计和可视化技术对真实样本数据进行探索。每个案例都包括具体的描
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio