排序算法

  1. 插入排序

    def inster_sort(lists):
        count = len(lists)
        for i in range (1,count):
            key = lists[i]
            j = i -1
            while j>=0:
                if lists[j] > key:
                    lists[j+1] = lists[j]
                    lists[j] = key
                j -= 1
         return lists
    # 时间复杂度O(n**2),空间复杂度O(1) ,稳定
    
  2. 希尔排序

    def shell_sort(lists):
        # 希尔排序
        count = len(lists)
        step = 2
        group = count / step
        while group > 0:
            for i in range(0, group):
                j = i + group
                while j < count:
                    k = j - group
                    key = lists[j]
                    while k >= 0:
                        if lists[k] > key:
                            lists[k + group] = lists[k]
                            lists[k] = key
                        k -= group
                    j += group
            group /= step
        return lists
    
  3. 冒泡排序

    def bubble_sort(lists):
        # 冒泡排序
        count = len(lists)
        for i in range(0, count):
            for j in range(i + 1, count):
                if lists[i] > lists[j]:
                    lists[i], lists[j] = lists[j], lists[i]
        return lists
    # 时间复杂度O(n*2),空间复杂度O(nlog2N),稳定
    
  4. 快速排序

    def quick_sort(lists, left, right):
        # python 快速排序
        if left >= right:
            return lists
        key = lists[left]
        low = left
        high = right
        while left < right:
            while left < right and lists[right] >= key:
                right -= 1
            lists[left] = lists[right]
            while left < right and lists[left] <= key:
                left += 1
            lists[right] = lists[left]
        lists[right] = key
        quick_sort(lists, low, left - 1)
        quick_sort(lists, left + 1, high)
        return lists
    # 时间复杂度O(n*log2N),空间复杂度O(nlog2N),不稳定
    
    # include 
    # include 
    # define BFU_SIZE 10
    # c 快速实现
    # 打印数组元素
    void display(int array[],int maxlen){
        int i ;
        for(i=0;iarray[begin]){
                    swap(&array[i],&array[j]);
                    j--;
                }
                else{
                    i++;
                }
            }
            # 此时数组分成了两个部分,进行比较,确定 基准数
            if(array[i]>=array[begin]){
                i--;
            }
            swap(&array[begin],&array[i]);
            quicksort(array,maxlen,begin,i);
            quicksort(array,amxlen,j,end);
        }
    }
    
    int main(){
        int n;
        int array[BUF_SIZE]={}
        int maxlen=BUF_SIZE
        
        printf("排序之前");
        display(array,maxlen)
        
        quicksort(array,amxlen,0,maxxlen-1);
        printf("排序之后");
        display(araay,maxxlen);
    
        retunr 0;
    }
    
  5. 直接选择排序

    def select_sort(lists):
        # python 选择排序
        count = len(lists)
        for i in range(0, count):
            min = i
            for j in range(i + 1, count):
                if lists[min] > lists[j]:
                    min = j
            lists[min], lists[i] = lists[i], lists[min]
        return lists
    # 时间复杂度O(n**2),空间复杂度O(1),不稳定
    
    # c 选择排序
    void selection_sort(int arr[],int n){
        int i,j,k;
        for(i=0;i
  6. 堆排序

    from collections import deque
    L=deque([34,23,32,45,67,87])
    l.appendleft(0)
    
    def element_exchange(numbers,low,high):
        temp=numbers[low]
        i=low
        j=2*i
        
        while j<=high:
            # 如果右节点较大,则j指向右节点
            if jnumbers[j]:
                # 将numbers[j]放到双亲节点上
                numbers[i]=numbers[j]
                i=j
                j=i*2
            else:
                break;
        # 被调整节点放入最终位置        
        numbers[i]=temp
    
    def top_heap_sort(numbers):
        length=len(numbers)-1
        # 指定第一个元素的下标,是无序序列的第一个非叶子节点
        first_exchange_element=length/2
        # 建立初始堆
        print first_exchange_element
        for x in tange(first_exchange_element):
            element_exchange(numbers,first_exchange_element-x,length)
        # 将根节点放到最终位置,继续堆排序
        for y in range(length-1):
            temp=numbers[1]
            numbers[1]=numbers[length-y]
            numbers[length-y]=temp
            element_exchange(numbers,1,length-y-1)
    # 时间复杂度O(n*log2N),空间复杂度O(1),不稳定
    
  7. 归并排序

    # 进行拆分
    def merge_sort(lists):
        # 长度不足1,直接返回
        if len(lists) <= 1:
            return lists
        # 二分
        num = len(lists) / 2
        # 递归拆分
        left = merge_sort(lists[:num])
        right = merge_sort(lists[num:])
        # 执行比较
        return merge(left, right)
    # 进行比较合并
    def merge(a,b):
        c = []
        h=j=0
        while j
  8. 基数排序

    import math
    def radix_sort(lists, radix=10):
        k = int(math.ceil(math.log(max(lists), radix)))
        bucket = [[] for i in range(radix)]
        for i in range(1, k+1):
            for j in lists:
                bucket[j/(radix**(i-1)) % (radix**i)].append(j)
            del lists[:]
            for z in bucket:
                lists += z
                del z[:]
        return lists
    
  9. 斐波那契数列

    # 递归实现
    def item( num ):
        if num == 0 :
            res = 0
        elif num == 1:
            res = 1
        else:
            res = item ( num - 1) + item (num -2)
        return res
    
    def printFibo( no ):
        i = 0
    
        while i < no:
            print item(i)
            i += 1
    
    # 迭代器实现,返回一个列表
    def fibo(num):
        numList = [0,1]
    
        for i in range(num - 2):
            numList.append(numList[-2] + numList[-1])
        return numList
    
  10. 深度遍历

    def DFS(nodes):
        # queue是堆栈
        # order是存放的具体路径
        queue,order=[],[]
        queue.append(nodes)
        while queue:
            v=queue.pop()
            order.append(v)
            for w in sequense[v]:
                if w not in order and w not in queue:
                    queue.append(w)
        return order
    
  11. 广度遍历

    def BFS(node):
        queue,order=[],[]
        queueu.append(node)
        order.append(node)
        while queue:
            v=queue.pop()
            for w in sequense[v]:
                if w not in order:
                    order.append(w)
                    queue.append(w)
        return order
    
  12. 二分查找

    def binary_search(find,list1):
        low=0
        high=len(list1)
        while lowfind:
                high=mid-1
            else:
                low=mid+1
        return -1
    

你可能感兴趣的:(排序算法)