- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- 《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
c++c#
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means聚类算法,作为数据聚类领域的经典之作,以其简洁高效的特性而备受瞩目。当我们将目光聚焦于C++这一强大而高效的编程语言时,会发现它与K-Means聚类算法的结合犹如天作之合,能够为数据处理与
- 《解锁AI黑科技:数据分类聚类与可视化》
程序猿阿伟
人工智能科技分类
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- AI大模型基于LLM的Agent架构图解
AI产品经理
人工智能深度学习语言模型学习
Agent定义Agent是什么?Agent是一种能够自主决策、采取行动以达到某种目标的实体。AIAgent的确定义:基于人工智能(尤其是大模型)技术,能够感知和理解环境,并采取行动以完成目标的智能实体。Agent能干什么?AIAgent主要依托LLM模型和具体的业务场景来调用相应的工具来完成任务目标,智能化程度和行业贴合度会更明显。典型案例有什么?智能核保应用,如果解决方案搭载AIAgent能力,
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- DeepSeek Janus-Pro:多模态AI模型的突破与创新
大模型之路
大模型(LLM)Deepseekdeepseekr1deepseekLLM强化学习
近年来,人工智能领域取得了显著的进展,尤其是在多模态模型(MultimodalModels)方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据,极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3深度剖析:下一代AI模型的全面解读)公司最新发布的Janus-Pro模型,正是在这一领域的一次重大突破。本文将深入探讨Janus-Pro的技术特点、创新之处以及其在多模态任务中的
- 2025年编程AI工具概览
hawkol
人工智能
随着人工智能技术的飞速发展,编程AI工具在2025年已成为程序员和开发者的得力助手。这些工具不仅提高了编程效率,还在代码质量、自动化和创新性方面表现出显著优势。以下是一些在2025年备受推崇的编程AI工具:1.GitHubCopilotGitHubCopilot是由GitHub、OpenAl和Microsoft联合打造的一款高级代码生成和辅助工具。它基于OpenAl的Codex模型,能够理解自然语
- 简述web3.0前端开发的最简单三个步骤
飞机号Mrsfu223
web3区块链pythonjava开发语言
Web3.0是互联网的下一代前沿技术,包括人工智能,大数据和区块链都是这项技术的核心,Web3.0为用户提供了更为智能的互联网服务体验,该技术的核心要素为去中心化,也就是摆脱中心化的权力控制,能够让数据和各项交易通过网络里的各项节点来维护和验证,并不是通过中心化的机构或服务器控制各项节点,Web3有车有中心化,有户权益性,去信任化,互操作性这些特点,可以拥有更大的操作空间和可能性。去中心化是基于区
- .NET/C#大型项目研发必备(5)--Web服务/WebApi的负载均衡
DeveloperSharp
负载均衡负载均衡器webapi微服务
前言:本系列文章适合有初/中级.NET知识的同学阅读。(1)本系列文章,旨在讲述研发一个中大型项目所需要了解的一系列“基本构件”,并提供这些“基本构件”的【最简单】、【最快速】使用方法!!(并不深究技术原理)(2)通过阅读本系列文章,能让你在正规“项目研发”方面快速入门+进阶,并能达成“小团队构建大网站”的目的。(3)本系列文章采用的技术,已成功应用到人工智能、产业互联网、社区电商、游戏、金融风控
- 人工智能在药物研发中的应用 - 从靶点发现和化合物筛选:利用AI深度学习技术加速药物研发流程
AI_DL_CODE
人工智能深度学习药物研发deeplearning
摘要:本文探讨了人工智能(AI)在药物研发中的应用,强调了AI在加速药物发现、降低成本和提高成功率方面的重要性。文章概述了AI在药物靶点识别、化合物筛选、药物设计优化等方面的应用,并详细介绍了机器学习和深度学习的基本原理。通过一个实操案例,展示了如何利用AI技术对化合物数据进行分析,预测潜在的药物候选物。案例包括数据预处理、模型训练、评估和优化等步骤,证明了AI在提高药物研发效率和准确性方面的潜力
- pytorch实现循环神经网络
纠结哥_Shrek
pytorchrnn深度学习
人工智能例子汇总:AI常见的算法和例子-CSDN博客PyTorch提供三种主要的RNN变体:nn.RNN:最基本的循环神经网络,适用于短时依赖任务。nn.LSTM:长短时记忆网络,适用于长序列数据,能有效解决梯度消失问题。nn.GRU:门控循环单元,比LSTM计算更高效,适用于大部分任务。网络类型优势适用场景RNN计算简单,适用于短时序列语音、文本处理(短序列)LSTM适用于长序列,能记忆长期信息
- 无线通信与人工智能技术与发展年度总结
Loving_enjoy
实用技巧人工智能信息与通信
2024年,无线通信与人工智能技术取得了显著的进步和突破,这些技术的革新不仅推动了行业的数字化转型,还为全球经济的持续发展注入了新的活力。以下是对无线通信与人工智能技术在这一年发展的详细总结。####无线通信技术的飞速演进无线通信技术的历史可以追溯到19世纪末,意大利科学家马可尼成功实现无线电波传输,开启了无线通信的大门。然而,直到20世纪后期,无线通信技术才真正开始腾飞,从2G到5G不断演进,如
- 探索Labelbox:打造自定义标注应用的利器!
孔旭澜Renata
探索Labelbox:打造自定义标注应用的利器!去发现同类优质开源项目:https://gitcode.com/项目介绍Labelbox是一款专为企业级客户设计的高级数据标注工具。它允许用户构建自己的定制标注界面(编辑器),提供强大的API和SDK,以适应各种复杂的数据标注需求。无论你是人工智能研究者、数据科学家还是软件开发者,Labelbox都能帮助你高效、精准地处理你的数据。技术分析Label
- 开源LLMs导览:工作原理、顶级LLM列表对比
万俟淋曦
SomeInsights人工智能AI生成式人工智能大模型LLMchatgpt大语言模型
机器人、人工智能相关领域news/events(专栏目录)本文目录一、开源LLM是什么意思?二、开源LLM如何工作?2.1预训练2.2代币化2.3开源LLM的微调2.4输入编码2.5训练与优化2.6推理三、开源LLM对组织的好处3.1增强的数据安全和隐私3.2节约成本3.3减少供应商依赖性3.4代码透明度四、哪种LLM模式最好?4.1BERT4.2LLaMA(LargeLanguageModelM
- LearnLM: Improving Gemini for Learning
UnknownBody
LLMDaily语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LearnLM:ImprovingGeminiforLearning》的翻译。LearnLM:提升Gemini的学习能力摘要1引言2建模3人类评价设计4结果5结论摘要今天的生成式人工智能系统默认情况下会呈现信息,而不是像人类导师那样让用户参与学习服务。为了解决这些系统的广泛潜在教育用例,我们将注入教学行为的挑战重新定义为一种教学指导,其中培训和评估示例包括描述后续模型中
- 【python】利用 GridSearchCV 和 SVM 进行学生成绩预测
码银
支持向量机机器学习人工智能
在机器学习领域,寻找最优模型参数是一个重要的步骤,它直接影响模型的泛化能力和预测准确性。本文将通过一个具体案例介绍如何使用支持向量机(SVM)和网格搜索(GridSearchCV)来预测学生的成绩,并通过调整参数来优化模型性能。数据集:公众号“码银学编程”后台回复:学生成绩-SVM前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:前言–人工智能教程引言学生的成绩预测
- 【学术会议征稿-第二届生成式人工智能与信息安全学术会议(GAIIS 2025)】人工智能与信息安全的魅力
禁默
学术会议人工智能
重要信息时间:2025年2月21日-23日地点:中国杭州官网:http://www.ic-gaiis.org简介2025年第二届生成式人工智能与信息安全将于2025年2月21日-23日在中国杭州举行。主要围绕“生成式人工智能与信息安全”的最新研究展开,紧密聚焦AI的热点和难点问题,深入剖析信息安全核心技术。生成式人工智能与信息安全的关系主要体现在以下几个方面:数据安全:生成式人工智能通常需要大量的
- 《解锁AI黑科技:数据分类聚类与可视化》
人工智能深度学习数据挖掘
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 园区智能化系统实现管理与服务的智能化转型与创新进阶
快鲸智慧楼宇管理系统
其他
内容概要园区智能化系统的出现,标志着管理与服务向智能化转型的重要一步。这一系统不仅仅是一个技术解决方案,更是一个全面提升园区运营效率与安全性的独特工具。通过集成大数据分析、物联网和人工智能,园区智能化系统能够为各类园区如工业园、产业园、物流园、写字楼与公寓等提供切实可行的解决方案。“智能化管理不仅是未来的发展趋势,更是提升竞争力的必要手段。”在资产管理方面,智能化系统能够实时监控并优化资源的配置,
- DeepSeek R1本地化部署与联网功能实战指南:从零搭建智能对话系统
Coderabo
pythonDeepSeekR1
前言在人工智能技术快速发展的今天,如何将先进的对话模型DeepSeekR1部署到本地环境并赋予其联网能力,成为许多开发者和企业关注的重点。本文将深入讲解完整的本地化部署流程,并通过实例代码演示如何为模型添加实时网络访问功能。一、环境准备与基础架构1.1硬件需求推荐配置:NVIDIAGPU(RTX3090或更高)+32GB内存+50GB存储空间最低配置:CPU(支持AVX2指令集)+16GB内存+3
- Meta首席科学家Yann LeCun预言:5年内AI架构将颠覆,当前大模型的4大核心缺陷
机器小乙
人工智能
✨引言:一场颠覆AI行业的预言在2025冬季达沃斯“技术辩论”现场,Meta首席AI科学家、图灵奖得主杨立昆(YannLeCun)抛出一个震撼观点:“当前的大语言模型(LLM)范式将在3-5年内被淘汰。”这位深度学习先驱的论断,不仅直指ChatGPT等明星产品的技术天花板,更揭示了下一代AI进化的核心路径——构建理解物理世界的“世界模型”(WorldModel)。作为Meta人工智能实验室负责人,
- AI编程风潮下的生产力革命:从 Copilot 到 Trae
机器小乙
AI编程
AI编程风潮下的生产力革命:从Copilot到Trae前言在人工智能飞速发展的背景下,“AI编程”已经不再是概念炒作,而逐渐成为真实可落地的开发模式。从最初的GitHubCopilot到如今字节跳动的Trae,以及各种聚焦不同场景的AI编程产品如Cursor、Bolt.new、ReplitGhostwriter等,都在加速软件研发流程。本文将结合一些常见使用场景,并通过简短代码示例,让你对AI编程
- 昆虫机器人:从仿生设计到未来应用
机器小乙
机器人
目录引言:从科幻到现实的启示仿生昆虫机器人:技术突破与功能解析应用场景:农业与灾后救援的革新技术难点:微型机器人研发的挑战未来趋势:智能化与群体协作的潜力总结:昆虫机器人技术的广阔前景1.引言:从科幻到现实的启示还记得阿西莫夫的《奇幻之旅》吗?科学家通过微型潜艇进入人体进行探险,这种场景曾是科幻迷的梦想。如今,随着人工智能和仿生设计的发展,这些奇思妙想正在逐步成为现实。最近,《科学机器人》期刊的一
- 【AI人工智能】DeepSeek R1:你需要知道的一切
大名顶顶
人工智能人工智能AIDeepSeek程序员计算机编程开源
我们将在本博客中介绍的关于DeepSeekR1的所有你需要知道的一切内容,请坚持认真读完,必有收获:DeepSeekR1简要概述主要特点与能力开源与可访问性模型架构强化学习训练变体与精简模型使用案例与应用从专有模型迁移到开源模型1.DeepSeekR1简要概述大语言模型(LLM)研究领域正在迅速发展,每一个新模型都在推动机器能力的边界。DeepSeekR1是由DeepSeek于2025年1月20日
- 【人工智能时代】-Deepseek用到的技术架构
xiaoli8748_软件开发
人工智能
以下是DeepSeek技术架构的详细介绍:1.混合专家架构(MoE)DeepSeek-V3采用了混合专家(Mixture-of-Experts,MoE)架构,这种架构通过将模型分解为多个“专家”网络来处理不同的输入特征。具体配置如下:层数:61层,其中58层为MoE层。专家数量:每层有257个专家(1个共享专家+256个路由专家),整个模型共有14,906个专家。激活机制:每个Token激活9个专
- Chrome浏览器删除网站cookies的解决方案
爱编程的喵喵
Windows实用技巧chromecookiecookies
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Chrome浏览器删除网站cooki
- 当区块链遇见AI:智能合约如何驱动下一代 DApps
威哥说编程
人工智能区块链ai
随着区块链技术和人工智能(AI)在各自领域的迅速发展,二者的结合逐渐成为了推动未来技术创新的重要力量。特别是在去中心化应用(DApps)领域,区块链与AI的结合有可能彻底改变我们对智能合约、数据处理、决策制定等方面的理解。智能合约(SmartContracts)作为区块链的核心组成部分,能够在无信任环境下自动执行合同条款。而AI则能赋予智能合约“自主学习”和“智能决策”的能力,使得DApps的功能
- 如何在本地电脑上安装和使用 DeepSeek R-1
知识大胖
NVIDIAGPU和大语言模型开发教程电脑
简介似乎每个人都在谈论DeepSeekR-1是中国人工智能公司DeepSeek开发的全新开源人工智能语言模型。一些用户声称,其推理能力与OpenAI的o1相当,甚至更好。目前,DeepSeek是免费使用的,这对用户来说是个好消息,但也带来了一些疑问。随着用户量的激增,他们如何管理服务器成本?硬件运行成本不可能便宜吧?这里最合乎逻辑的一点是——数据。数据是人工智能模型的命脉。他们可能以某种方式收集用
- 智能化Kubernetes管理:AI与ChatGPT提升运维效率的创新实践
大大宝的博客
k8skubernetes人工智能chatgpt
摘要随着云计算技术的飞速发展,Kubernetes(K8s)已成为企业进行容器化应用管理的标准平台。然而,Kubernetes集群的管理在复杂度、规模和资源优化等方面仍然面临巨大挑战。传统的Kubernetes运维方式往往依赖手动操作,导致效率低下,且容易产生人为错误。随着人工智能(AI)技术的成熟,特别是基于自然语言处理(NLP)的智能体如ChatGPT的出现,AI智能体能够在Kubernete
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen