Flink源码分析系列文档目录
请点击:Flink 源码分析系列文档目录
从collector到buffer
下面我们从数据源出开始分析数据是如何写入到Flink缓存中的。
NoTimestampContext.collect方法。该方法位于数据源(SourceFunction)中。
@Override
public void collect(T element) {
synchronized (lock) {
output.collect(reuse.replace(element));
}
}
这里调用的是output
对象的collect
方法。Output对象是Output
类型。经过debug我们发现这里的output真实类型为CountingOutput
类型。
CountingOutput
仅仅是一个包装类型,包装了一个Output
。相比于其他Output
而言多出了收集元素数量的监控。CountingOutput
维护了一个计数器类型监控变量:
private final Counter numRecordsOut;
在collect元素的时候调用了numRecordsOut.inc()
方法,实现了对收集元素数量的监控。
NoTimestampContext
的CountingOuput封装的output是什么类型的呢?我们通过debug查看发现内层的类型为RecordWriterOutput
。
RecordWriterOutput
的collect
方法如下所示:
@Override
public void collect(StreamRecord record) {
// outputTag使用旁路输出的时候会用到,这里只支持输出到main input
if (this.outputTag != null) {
// we are only responsible for emitting to the main input
return;
}
pushToRecordWriter(record);
}
pushToRecordWriter
方法使用序列化代理,将record传递给recordWriter
。代码如下:
private void pushToRecordWriter(StreamRecord record) {
serializationDelegate.setInstance(record);
try {
recordWriter.emit(serializationDelegate);
}
catch (Exception e) {
throw new RuntimeException(e.getMessage(), e);
}
}
RecordWriter
负责把数据序列化,然后写入到缓存中。它有两个实现类:
-
BroadcastRecordWriter
: 维护了多个下游channel,发送数据到下游所有的channel中。 -
ChannelSelectorRecordWriter
: 通过channelSelector
对象判断数据需要发往下游的哪个channel。keyBy
算子用的正是这个RecordWriter
。
这里我们分析下ChannelSelectorRecordWriter
的emit
方法:
@Override
public void emit(T record) throws IOException, InterruptedException {
emit(record, channelSelector.selectChannel(record));
}
很明显这里使用了channelSelector.selectChannel
方法。该方法为record和对应下游channel id的函数关系。
接下来我们又回到了父类RecordWriter
。
protected void emit(T record, int targetChannel) throws IOException, InterruptedException {
checkErroneous();
serializer.serializeRecord(record);
// Make sure we don't hold onto the large intermediate serialization buffer for too long
if (copyFromSerializerToTargetChannel(targetChannel)) {
// 压缩序列化器中间数据缓存大小
serializer.prune();
}
}
关键的逻辑在于copyFromSerializerToTargetChannel
。此方法从序列化器中复制数据到目标channel。
protected boolean copyFromSerializerToTargetChannel(int targetChannel) throws IOException, InterruptedException {
// We should reset the initial position of the intermediate serialization buffer before
// copying, so the serialization results can be copied to multiple target buffers.
// 此处Serializer为SpanningRecordSerializer
// reset方法将serializer内部的databuffer position重置为0
serializer.reset();
boolean pruneTriggered = false;
// 获取目标channel的bufferBuilder
// bufferBuilder内维护了MemorySegment,即内存片段
// Flink的内存管理依赖MemorySegment,可实现堆内堆外内存的管理
// RecordWriter内有一个bufferBuilder数组,长度和下游channel数目相同
// 该数组以channel ID为下标,存储和channel对应的bufferBuilder
// 如果对应channel的bufferBuilder尚未创建,调用requestNewBufferBuilder申请一个新的bufferBuilder
BufferBuilder bufferBuilder = getBufferBuilder(targetChannel);
// 复制serializer的数据到bufferBuilder中
SerializationResult result = serializer.copyToBufferBuilder(bufferBuilder);
// 循环直到result完全被写入到buffer
// 一条数据可能会被写入到多个缓存中
// 如果缓存不够用,会申请新的缓存
// 数据完全写入完毕之时,当前正在操作的缓存是没有写满的
// 因此返回true,表明需要压缩该buffer的空间
while (result.isFullBuffer()) {
finishBufferBuilder(bufferBuilder);
// If this was a full record, we are done. Not breaking out of the loop at this point
// will lead to another buffer request before breaking out (that would not be a
// problem per se, but it can lead to stalls in the pipeline).
if (result.isFullRecord()) {
pruneTriggered = true;
emptyCurrentBufferBuilder(targetChannel);
break;
}
bufferBuilder = requestNewBufferBuilder(targetChannel);
result = serializer.copyToBufferBuilder(bufferBuilder);
}
checkState(!serializer.hasSerializedData(), "All data should be written at once");
// 如果buffer超时时间为0,需要flush目标channel的数据
if (flushAlways) {
flushTargetPartition(targetChannel);
}
return pruneTriggered;
}
接下来分析下getBufferBuilder
方法。以ChannelSelectorRecordWriter
的此方法为例说明。
@Override
public BufferBuilder getBufferBuilder(int targetChannel) throws IOException, InterruptedException {
if (bufferBuilders[targetChannel] != null) {
return bufferBuilders[targetChannel];
} else {
return requestNewBufferBuilder(targetChannel);
}
}
如果bufferBuilders
数组中targetChannel下标不存在,申请一个新的BufferBuilder
。此处我们发现各个channel对应的bufferBuilder
是懒加载的,只有第一次用到的时候才创建。
我们跟踪到requestNewBufferBuilder
方法。
@Override
public BufferBuilder requestNewBufferBuilder(int targetChannel) throws IOException, InterruptedException {
// 首先需要检查targetChannel对应的buffer必须为null或数据已写入完毕
checkState(bufferBuilders[targetChannel] == null || bufferBuilders[targetChannel].isFinished());
// 获取目标分区的bufferBuilder
BufferBuilder bufferBuilder = targetPartition.getBufferBuilder();
// 创建一个bufferConsumer,bufferConsumer保存了bufferBuilder的memorySegment,当前写入指针和当前读取指针
// BufferBuilder用于写入数据,BufferConsumer用于读取数据
targetPartition.addBufferConsumer(bufferBuilder.createBufferConsumer(), targetChannel);
bufferBuilders[targetChannel] = bufferBuilder;
return bufferBuilder;
}
addBufferConsumer
方法
@Override
public boolean addBufferConsumer(BufferConsumer bufferConsumer, int subpartitionIndex) throws IOException {
checkNotNull(bufferConsumer);
ResultSubpartition subpartition;
try {
checkInProduceState();
// 获取subPartition
// 此处subpartitionIndex为targetChannel
subpartition = subpartitions[subpartitionIndex];
}
catch (Exception ex) {
bufferConsumer.close();
throw ex;
}
// 将bufferConsumer添加入subpartition
return subpartition.add(bufferConsumer);
}
ReultSubPartition
有两个实现类,PipelinedSubpartition
和BoundedBlockingSubpartition
。
其中PipelinedSubpartition
用于流处理场景下的数据消费。它内部维护了一个BufferBuilder
队列。消费者通过调用createReadView
创建一个PipelinedSubpartitionView
来消费数据。创建view的时候需要提供一个BufferAvailabilityListener
对象,用于作为buffer中有数据可用时候的回调。因此PipelinedSubpartition
可以做到一旦有数据就及时提醒下游去消费。
BoundedBlockingSubpartition
适合批处理场景下的数据消费。和PipelinedSubpartition
不同的是,BoundedBlockingSubpartition
数据是先写入后消费的,可以一次写入,多次消费。它的数据写入到BoundedData
中。数据落地的方式随着BoundedData
实现的不同而不同。数据可以保存在文件系统(FileChannelBoundedData
),内存(MemoryMappedBoundedData
)或者同时在文件系统和内存(FileChannelMemoryMappedBoundedData
)。
下游请求SubPartition
上一段分析过数据的消费是通过ResultSubPartition
调用createReadView
方法。
PipelinedSubpartition
的createReadView
代码如下:
@Override
public PipelinedSubpartitionView createReadView(BufferAvailabilityListener availabilityListener) throws IOException {
final boolean notifyDataAvailable;
synchronized (buffers) {
// 检查该SubPartition的缓存不能被释放
checkState(!isReleased);
// 检查之前不能创建过read view
checkState(readView == null,
"Subpartition %s of is being (or already has been) consumed, " +
"but pipelined subpartitions can only be consumed once.", index, parent.getPartitionId());
LOG.debug("{}: Creating read view for subpartition {} of partition {}.",
parent.getOwningTaskName(), index, parent.getPartitionId());
// 创建view,同时转入availabilityListener
readView = new PipelinedSubpartitionView(this, availabilityListener);
// 如果buffer不为空,需要调用listener通知数据已准备好,可供消费
notifyDataAvailable = !buffers.isEmpty();
}
if (notifyDataAvailable) {
notifyDataAvailable();
}
return readView;
}
上述方法在ResultPartitionManager
中调用。
ResultPartitionManager
负责维护当前创建和消费的分区。
ResultPartitionManager
的createSubpartitionView
方法:
@Override
public ResultSubpartitionView createSubpartitionView(
ResultPartitionID partitionId,
int subpartitionIndex,
BufferAvailabilityListener availabilityListener) throws IOException {
synchronized (registeredPartitions) {
final ResultPartition partition = registeredPartitions.get(partitionId);
if (partition == null) {
throw new PartitionNotFoundException(partitionId);
}
LOG.debug("Requesting subpartition {} of {}.", subpartitionIndex, partition);
return partition.createSubpartitionView(subpartitionIndex, availabilityListener);
}
}
该方法逻辑比较简单,ResultPartition
在setup
的时候会将该分区注册到ResultPartitionManager
中。创建view的时候会根据partition id从已注册的分区列表中获取到指定的ResultPartition
,然后创建一个subpartition view。
继续跟踪该方法的调用链,我们可以发现该方法在两个类中调用:LocalInputChannel
和CreditBasedSequenceNumberingViewReader
。
LocalInputChannel
负责从本地请求一个subPartition view。
CreditBasedSequenceNumberingViewReader
负责通过网络从其他节点获取subPartition view。同时提供了credit based反压机制的支持。
我们跟踪下CreditBasedSequenceNumberingViewReader
的requestSubpartitionView
方法:
@Override
public void requestSubpartitionView(
ResultPartitionProvider partitionProvider,
ResultPartitionID resultPartitionId,
int subPartitionIndex) throws IOException {
synchronized (requestLock) {
if (subpartitionView == null) {
// This this call can trigger a notification we have to
// schedule a separate task at the event loop that will
// start consuming this. Otherwise the reference to the
// view cannot be available in getNextBuffer().
this.subpartitionView = partitionProvider.createSubpartitionView(
resultPartitionId,
subPartitionIndex,
this);
} else {
throw new IllegalStateException("Subpartition already requested");
}
}
}
方法逻辑仅为创建一个subpartitionView
。继续向上跟踪该方法的调用位置,我们找到了PartitionRequestServerHandler
的channelRead0
方法:
@Override
protected void channelRead0(ChannelHandlerContext ctx, NettyMessage msg) throws Exception {
try {
// 获取接收到消息的类型
Class> msgClazz = msg.getClass();
// ----------------------------------------------------------------
// Intermediate result partition requests
// ----------------------------------------------------------------
// 如果是分区请求消息
if (msgClazz == PartitionRequest.class) {
PartitionRequest request = (PartitionRequest) msg;
LOG.debug("Read channel on {}: {}.", ctx.channel().localAddress(), request);
try {
NetworkSequenceViewReader reader;
// 创建一个reader
reader = new CreditBasedSequenceNumberingViewReader(
request.receiverId,
request.credit,
outboundQueue);
// 为该reader分配一个subpartitionView
reader.requestSubpartitionView(
partitionProvider,
request.partitionId,
request.queueIndex);
// 注册reader到outboundQueue中
// outboundQueue中存放了多个reader,这些reader在队列中排队,等待数据发送
outboundQueue.notifyReaderCreated(reader);
} catch (PartitionNotFoundException notFound) {
respondWithError(ctx, notFound, request.receiverId);
}
}
// ----------------------------------------------------------------
// Task events
// ----------------------------------------------------------------
else if (msgClazz == TaskEventRequest.class) {
TaskEventRequest request = (TaskEventRequest) msg;
if (!taskEventPublisher.publish(request.partitionId, request.event)) {
respondWithError(ctx, new IllegalArgumentException("Task event receiver not found."), request.receiverId);
}
} else if (msgClazz == CancelPartitionRequest.class) {
CancelPartitionRequest request = (CancelPartitionRequest) msg;
outboundQueue.cancel(request.receiverId);
} else if (msgClazz == CloseRequest.class) {
outboundQueue.close();
} else if (msgClazz == AddCredit.class) {
AddCredit request = (AddCredit) msg;
outboundQueue.addCredit(request.receiverId, request.credit);
} else {
LOG.warn("Received unexpected client request: {}", msg);
}
} catch (Throwable t) {
respondWithError(ctx, t);
}
}
此方法在上游数据发送端执行,数据发送端对应的netty角色为server。
这里我们根据netty接收到的消息的类型,来做出对应的响应。如果接收到的消息类型为PartitionRequest
,需要创建一个CreditBasedSequenceNumberingViewReader
并将该reader加入到outboundQueue
中。
outboundQueue
是一个PartitionRequestQueue
类型对象。该对象负责处理partition request。每次partition request会在PartitionRequestServerHandler
中创建一个NetworkSequenceViewReader
对象。然后给每个reader分配SubPartitionView(调用requestSubpartitionView)。最后调用notifyReaderCreated
把reader加入到PartitionRequestQueue
的allReaders
中。PartitionRequestQueue
监听下游的channel是否可写(writability)。下游channel变为可写的时候会调用channelWritabilityChanged
方法,将allReaders
中排队的reader逐个取出,发往下游。
channelWritabilityChanged
方法代码如下:
@Override
public void channelWritabilityChanged(ChannelHandlerContext ctx) throws Exception {
writeAndFlushNextMessageIfPossible(ctx.channel());
}
writeAndFlushNextMessageIfPossible
方法代码如下:
private void writeAndFlushNextMessageIfPossible(final Channel channel) throws IOException {
// 如果channel不可写,返回
if (fatalError || !channel.isWritable()) {
return;
}
// The logic here is very similar to the combined input gate and local
// input channel logic. You can think of this class acting as the input
// gate and the consumed views as the local input channels.
BufferAndAvailability next = null;
try {
while (true) {
// 队列中取出一个reader
NetworkSequenceViewReader reader = pollAvailableReader();
// No queue with available data. We allow this here, because
// of the write callbacks that are executed after each write.
if (reader == null) {
return;
}
// 获取buffer
next = reader.getNextBuffer();
if (next == null) {
if (!reader.isReleased()) {
continue;
}
Throwable cause = reader.getFailureCause();
if (cause != null) {
ErrorResponse msg = new ErrorResponse(
new ProducerFailedException(cause),
reader.getReceiverId());
ctx.writeAndFlush(msg);
}
} else {
// This channel was now removed from the available reader queue.
// We re-add it into the queue if it is still available
if (next.moreAvailable()) {
registerAvailableReader(reader);
}
// 包装buffer
BufferResponse msg = new BufferResponse(
next.buffer(),
reader.getSequenceNumber(),
reader.getReceiverId(),
next.buffersInBacklog());
// Write and flush and wait until this is done before
// trying to continue with the next buffer.
// 将msg发送到下游
channel.writeAndFlush(msg).addListener(writeListener);
return;
}
}
} catch (Throwable t) {
if (next != null) {
next.buffer().recycleBuffer();
}
throw new IOException(t.getMessage(), t);
}
}
接下来我们回到PartitionRequest
这个请求。PartitionRequest
是在哪里发送的呢?我们跟踪到NettyPartitionRequestClient
的requestSubpartition
方法:
@Override
public void requestSubpartition(
final ResultPartitionID partitionId,
final int subpartitionIndex,
final RemoteInputChannel inputChannel,
int delayMs) throws IOException {
checkNotClosed();
LOG.debug("Requesting subpartition {} of partition {} with {} ms delay.",
subpartitionIndex, partitionId, delayMs);
// clientHandler为CreditBasedPartitionRequestClientHandler
// 它内部维护了input channel ID和channel的对应关系,是一个map类型变量
// 在读取消息的时候,需要依赖该map从channel ID获取到channel对象本身
clientHandler.addInputChannel(inputChannel);
// 创建PartitionRequest对象
final PartitionRequest request = new PartitionRequest(
partitionId, subpartitionIndex, inputChannel.getInputChannelId(), inputChannel.getInitialCredit());
// 发送PartitionRequest请求发送成功之后的回调函数
final ChannelFutureListener listener = new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
// 如果遇到了错误
if (!future.isSuccess()) {
// map中移除这个channel
clientHandler.removeInputChannel(inputChannel);
SocketAddress remoteAddr = future.channel().remoteAddress();
// 为inputChannel内部的cause变量赋值,设置一个error
inputChannel.onError(
new LocalTransportException(
String.format("Sending the partition request to '%s' failed.", remoteAddr),
future.channel().localAddress(), future.cause()
));
}
}
};
// 如果不需要延迟发送
if (delayMs == 0) {
ChannelFuture f = tcpChannel.writeAndFlush(request);
f.addListener(listener);
} else {
// 如果需要延迟发送,调用eventLoop的schedule方法
final ChannelFuture[] f = new ChannelFuture[1];
tcpChannel.eventLoop().schedule(new Runnable() {
@Override
public void run() {
f[0] = tcpChannel.writeAndFlush(request);
f[0].addListener(listener);
}
}, delayMs, TimeUnit.MILLISECONDS);
}
}
继续跟踪调用链,到RemoteInputChannel
的requestSubpartition
方法。代码如下所示:
@VisibleForTesting
@Override
public void requestSubpartition(int subpartitionIndex) throws IOException, InterruptedException {
if (partitionRequestClient == null) {
// Create a client and request the partition
try {
partitionRequestClient = connectionManager.createPartitionRequestClient(connectionId);
} catch (IOException e) {
// IOExceptions indicate that we could not open a connection to the remote TaskExecutor
throw new PartitionConnectionException(partitionId, e);
}
partitionRequestClient.requestSubpartition(partitionId, subpartitionIndex, this, 0);
}
}
RemoteInputChannel
的requestSubpartition
方法中,如果partitionRequestClient
,会预先通过connectionManager
创建一个client,再调用requestSubpartition
方法。
继续跟踪,我们找到SingleInputGate
的requestPartitions
方法。代码如下:
@VisibleForTesting
void requestPartitions() throws IOException, InterruptedException {
synchronized (requestLock) {
// 只能请求一次partition,第一次调用该方法后此flag会被设置为true
if (!requestedPartitionsFlag) {
if (closeFuture.isDone()) {
throw new IllegalStateException("Already released.");
}
// Sanity checks
if (numberOfInputChannels != inputChannels.size()) {
throw new IllegalStateException(String.format(
"Bug in input gate setup logic: mismatch between " +
"number of total input channels [%s] and the currently set number of input " +
"channels [%s].",
inputChannels.size(),
numberOfInputChannels));
}
// 循环所有的inputChannels,请求他们对应的subPartition
for (InputChannel inputChannel : inputChannels.values()) {
inputChannel.requestSubpartition(consumedSubpartitionIndex);
}
}
// 方法调用完毕设置flag为true,防止重复调用
requestedPartitionsFlag = true;
}
}
SingleInputGate
继承了InputGate
接口。InputGate
的作用为从intermediate result读取数据到task中。
根据JobGraph(参见Flink 源码之JobGraph生成
)的分析我们可以得知operatorChain之间使用的intermediate result来作为中间结果缓存。Intermediate result在执行时的真实数据承载对象为ResultPartition
(一个或多个,视分区条件而定)。ResultPartition
分为一个或多个ResultSubPartition
。每一个ResultSubPartition
和下游的某一个InputGate
有对应关系。下游的InputGate
读取上游所有对应ResultSubPartition
的内容。
读取数据
我们分析下StreamTask
的processInput
方法。代码如下所示:
protected void processInput(MailboxDefaultAction.Controller controller) throws Exception {
// 调用inputProcessor的processInput方法
InputStatus status = inputProcessor.processInput();
if (status == InputStatus.MORE_AVAILABLE && recordWriter.isAvailable()) {
return;
}
if (status == InputStatus.END_OF_INPUT) {
// 如果输入结束,将mailboxLoopRunning设置为false,停止运行
controller.allActionsCompleted();
return;
}
// 在inputGate recordWriter或inputProcessor恢复可用之后异步调用default action的恢复操作
CompletableFuture> jointFuture = getInputOutputJointFuture(status);
MailboxDefaultAction.Suspension suspendedDefaultAction = controller.suspendDefaultAction();
jointFuture.thenRun(suspendedDefaultAction::resume);
}
这里我们重点关注下inputProcessor.processInput()
调用。
inputProcessor
有两个实现类:StreamOneInputProcessor
和StreamTwoInputProcessor
。我们看一下StreamOneInputProcessor
的processInput
方法。代码如下:
@Override
public InputStatus processInput() throws Exception {
InputStatus status = input.emitNext(output);
if (status == InputStatus.END_OF_INPUT) {
synchronized (lock) {
operatorChain.endHeadOperatorInput(1);
}
}
return status;
}
这里的input
具有两个实现类StreamTaskSourceInput
和StreamTaskNetworkInput
。如果该StreamTask运行的是数据源,则实现类为StreamTaskSourceInput
。其他情况使用的实现类为StreamTaskNetworkInput
,需要通过网络读取数据。
我们分析下StreamTaskNetworkInput
的emitNext
方法。代码如下:
@Override
public InputStatus emitNext(DataOutput output) throws Exception {
while (true) {
// get the stream element from the deserializer
if (currentRecordDeserializer != null) {
// 从buffer的memorySegment中反序列化数据
DeserializationResult result = currentRecordDeserializer.getNextRecord(deserializationDelegate);
// 如果buffer已经消费了,可以回收buffer
if (result.isBufferConsumed()) {
currentRecordDeserializer.getCurrentBuffer().recycleBuffer();
currentRecordDeserializer = null;
}
// 如果已经读取到完整记录
if (result.isFullRecord()) {
// 处理从buffer中反序列化出的数据,在后续博客中分析
processElement(deserializationDelegate.getInstance(), output);
return InputStatus.MORE_AVAILABLE;
}
}
// 从CheckpointInputGate读取数据
Optional bufferOrEvent = checkpointedInputGate.pollNext();
if (bufferOrEvent.isPresent()) {
// 处理获取到的缓存,并将缓存中的memory segment提供给currentRecordDeserializer,供反序列化出消息,代码稍后分析
processBufferOrEvent(bufferOrEvent.get());
} else {
// 如果checkpointedInputGate 输入流结束,返回END_OF_INPUT
if (checkpointedInputGate.isFinished()) {
checkState(checkpointedInputGate.getAvailableFuture().isDone(), "Finished BarrierHandler should be available");
if (!checkpointedInputGate.isEmpty()) {
throw new IllegalStateException("Trailing data in checkpoint barrier handler.");
}
return InputStatus.END_OF_INPUT;
}
return InputStatus.NOTHING_AVAILABLE;
}
}
}
我们再看下processBufferOrEvent
方法的源代码:
private void processBufferOrEvent(BufferOrEvent bufferOrEvent) throws IOException {
// 如果是buffer的话
if (bufferOrEvent.isBuffer()) {
// 读取buffer对应的channel id
lastChannel = bufferOrEvent.getChannelIndex();
checkState(lastChannel != StreamTaskInput.UNSPECIFIED);
// 获取channel对应的record反序列化器
currentRecordDeserializer = recordDeserializers[lastChannel];
checkState(currentRecordDeserializer != null,
"currentRecordDeserializer has already been released");
// 此处是关键,设置反序列化器要读取的buffer为inputGate获取到的buffer
currentRecordDeserializer.setNextBuffer(bufferOrEvent.getBuffer());
}
else {
// Event received
// 如果接收到的是event
final AbstractEvent event = bufferOrEvent.getEvent();
if (event.getClass() != EndOfPartitionEvent.class) {
throw new IOException("Unexpected event: " + event);
}
// release the record deserializer immediately,
// which is very valuable in case of bounded stream
// 清除channel对应的反序列化器
// 并将recordDeserializers[channelIndex] 引用置空
releaseDeserializer(bufferOrEvent.getChannelIndex());
}
}
我们继续跟踪buffer是如何从inputGate中获取的。经debug我们发现这个inputGate使用的2层包装。CheckpointedInputGate
包装了InputGateWithMetrics
,又包装了SingleInputGate
。其中CheckpointedInputGate
负责检查数据流中的checkpoint barrier,调用对应的barrierHandler
决定是否触发checkpoint操作。参见Flink 源码之分布式快照
。InputGateWithMetrics
负责监控接收的数据,统计所有流入数据的总字节数。
经历2层包装之后,程序逻辑进行到SingleInputGate
的pollNext
方法
SingleInputGate
有pollNext
和getNext
两个方法。这两个方法基本相同,唯一的区别是pollNext
为非阻塞方式,getNext
为阻塞方式。
@Override
public Optional pollNext() throws IOException, InterruptedException {
return getNextBufferOrEvent(false);
}
getNextBufferOrEvent
方法:
private Optional getNextBufferOrEvent(boolean blocking) throws IOException, InterruptedException {
// 如果接收到所有分区终止的事件,则返回空
if (hasReceivedAllEndOfPartitionEvents) {
return Optional.empty();
}
// 如果input gate被关闭
if (closeFuture.isDone()) {
throw new CancelTaskException("Input gate is already closed.");
}
// 以阻塞方式读取数据
Optional> next = waitAndGetNextData(blocking);
if (!next.isPresent()) {
return Optional.empty();
}
InputWithData inputWithData = next.get();
return Optional.of(transformToBufferOrEvent(
inputWithData.data.buffer(),
inputWithData.moreAvailable,
inputWithData.input));
}
waitAndGetNextData
方法:
private Optional> waitAndGetNextData(boolean blocking)
throws IOException, InterruptedException {
while (true) {
// 获取channel,根据blocking参数决定是否是阻塞方式
Optional inputChannel = getChannel(blocking);
if (!inputChannel.isPresent()) {
return Optional.empty();
}
// Do not query inputChannel under the lock, to avoid potential deadlocks coming from
// notifications.
// 获取input channel的缓存数据
Optional result = inputChannel.get().getNextBuffer();
synchronized (inputChannelsWithData) {
// 能获取到数据,并且还有更多数据
if (result.isPresent() && result.get().moreAvailable()) {
// enqueue the inputChannel at the end to avoid starvation
// channel加入到inputChannelsWithData队列中
inputChannelsWithData.add(inputChannel.get());
// 下面这个BitSet负责记录哪些channel已经加入到了inputChannelsWithData队列
enqueuedInputChannelsWithData.set(inputChannel.get().getChannelIndex());
}
// 如果inputChannelsWithData为空,设置为不可用状态
if (inputChannelsWithData.isEmpty()) {
availabilityHelper.resetUnavailable();
}
// 返回包装后的结果
if (result.isPresent()) {
return Optional.of(new InputWithData<>(
inputChannel.get(),
result.get(),
!inputChannelsWithData.isEmpty()));
}
}
}
}
每一个InputGate
包含一个或多个InputChannel
。其中InputChannel
分为2种。LocalInputChannel
负责从本地的SubPartition读取数据,RemoteInputChannel
负责从远程(其他节点)的Subpartition读取数据。
LocalInputChannel
的getNextBuffer
方法:
@Override
Optional getNextBuffer() throws IOException, InterruptedException {
checkError();
// 获取requestSubpartition方法得到的subpartitionView
ResultSubpartitionView subpartitionView = this.subpartitionView;
// 如果没有获取到subpartitionView,需要再次检查subpartitionView
// 如果此时另一线程正在调用requestSubpartition方法,checkAndWaitForSubpartitionView方法会被阻塞
// 等待requestSubpartition执行完毕
if (subpartitionView == null) {
// There is a possible race condition between writing a EndOfPartitionEvent (1) and flushing (3) the Local
// channel on the sender side, and reading EndOfPartitionEvent (2) and processing flush notification (4). When
// they happen in that order (1 - 2 - 3 - 4), flush notification can re-enqueue LocalInputChannel after (or
// during) it was released during reading the EndOfPartitionEvent (2).
if (isReleased) {
return Optional.empty();
}
// this can happen if the request for the partition was triggered asynchronously
// by the time trigger
// would be good to avoid that, by guaranteeing that the requestPartition() and
// getNextBuffer() always come from the same thread
// we could do that by letting the timer insert a special "requesting channel" into the input gate's queue
subpartitionView = checkAndWaitForSubpartitionView();
}
// 获取缓存数据
BufferAndBacklog next = subpartitionView.getNextBuffer();
if (next == null) {
if (subpartitionView.isReleased()) {
throw new CancelTaskException("Consumed partition " + subpartitionView + " has been released.");
} else {
return Optional.empty();
}
}
// 更新已读取字节数
numBytesIn.inc(next.buffer().getSize());
// 更新以读取缓存数
numBuffersIn.inc();
return Optional.of(new BufferAndAvailability(next.buffer(), next.isMoreAvailable(), next.buffersInBacklog()));
}
以上是LocalInputChannel
的getNextBuffer
方法。下面我们分析下RemoteInputChannel
的getNextBuffer
方法。该方法和LocalInputChannel
不同的是它从receivedBuffers队列中获取buffer,而不是直接从subpartitionView获取。
@Override
Optional getNextBuffer() throws IOException {
checkState(!isReleased.get(), "Queried for a buffer after channel has been closed.");
checkState(partitionRequestClient != null, "Queried for a buffer before requesting a queue.");
checkError();
final Buffer next;
final boolean moreAvailable;
// 从receivedBuffers队列中获取buffer
synchronized (receivedBuffers) {
next = receivedBuffers.poll();
moreAvailable = !receivedBuffers.isEmpty();
}
numBytesIn.inc(next.getSize());
numBuffersIn.inc();
return Optional.of(new BufferAndAvailability(next, moreAvailable, getSenderBacklog()));
}
接下来大家会问,receivedBuffers
中的缓存数据是什么时候被加入的呢?答案在onBuffer
方法。代码如下:
public void onBuffer(Buffer buffer, int sequenceNumber, int backlog) throws IOException {
// 是否需要回收此buffer
boolean recycleBuffer = true;
try {
final boolean wasEmpty;
synchronized (receivedBuffers) {
// Similar to notifyBufferAvailable(), make sure that we never add a buffer
// after releaseAllResources() released all buffers from receivedBuffers
// (see above for details).
// 在releaseAllResources()调用之后无法在接收新的buffer
if (isReleased.get()) {
return;
}
// 检查sequenceNumber
if (expectedSequenceNumber != sequenceNumber) {
onError(new BufferReorderingException(expectedSequenceNumber, sequenceNumber));
return;
}
// 判断添加buffer之前的队列是否为空
wasEmpty = receivedBuffers.isEmpty();
// 添加缓存数据到队列中
receivedBuffers.add(buffer);
// 已接收到数据,缓存不需要回收
recycleBuffer = false;
}
// 增加SequenceNumber
++expectedSequenceNumber;
// 如果添加buffer之前的队列为空,需要通知对应的inputGate,现在已经有数据了(不为空)
if (wasEmpty) {
notifyChannelNonEmpty();
}
if (backlog >= 0) {
// 负责提前分配buffer
onSenderBacklog(backlog);
}
} finally {
// 回收buffer
if (recycleBuffer) {
buffer.recycleBuffer();
}
}
}
这里我们先看一下如何提前分配buffer的逻辑。代码如下:
void onSenderBacklog(int backlog) throws IOException {
int numRequestedBuffers = 0;
// 锁定bufferQueue
synchronized (bufferQueue) {
// Similar to notifyBufferAvailable(), make sure that we never add a buffer
// after releaseAllResources() released all buffers (see above for details).
// 避免在releaseAllResources()之后执行
if (isReleased.get()) {
return;
}
// backlog为后续所需的buffer(积压数量)
// initialCredit为初始预留的buffer数量
numRequiredBuffers = backlog + initialCredit;
// 如果可用buffer数小于numRequiredBuffers
// 并且不在等待请求浮动Buffers的状态
// 需要为bufferQueue增加浮动buffer
while (bufferQueue.getAvailableBufferSize() < numRequiredBuffers && !isWaitingForFloatingBuffers) {
// 申请一个buffer
Buffer buffer = inputGate.getBufferPool().requestBuffer();
if (buffer != null) {
// 加入浮动buffer队列
bufferQueue.addFloatingBuffer(buffer);
numRequestedBuffers++;
} else if (inputGate.getBufferProvider().addBufferListener(this)) {
// If the channel has not got enough buffers, register it as listener to wait for more floating buffers.
// 如果请求不到buffer(channel没有足够的buffer)
// 注册一个监听器,并且标记等待请求浮动Buffers的状态为true
isWaitingForFloatingBuffers = true;
break;
}
}
}
// 如果本次操作请求的buffer数量大于0
// unannouncedCredit为未告知上游生产者的credit,用于数据反压
// 如果unannouncedCredit在增加numRequestedBuffers之前的值为0
// 需要通知上游这里有credit,可以接收数据
if (numRequestedBuffers > 0 && unannouncedCredit.getAndAdd(numRequestedBuffers) == 0) {
notifyCreditAvailable();
}
}
上面分析到如果请求buffer失败,会注册一个监听器。那么当监听器执行到buffer创建成功的时候执行什么方法呢?我们分析下notifyBufferAvailable
方法。
@Override
public NotificationResult notifyBufferAvailable(Buffer buffer) {
NotificationResult notificationResult = NotificationResult.BUFFER_NOT_USED;
try {
synchronized (bufferQueue) {
// 保证必须在等待浮动buffer状态
checkState(isWaitingForFloatingBuffers,
"This channel should be waiting for floating buffers.");
// Important: make sure that we never add a buffer after releaseAllResources()
// released all buffers. Following scenarios exist:
// 1) releaseAllResources() already released buffers inside bufferQueue
// -> then isReleased is set correctly
// 2) releaseAllResources() did not yet release buffers from bufferQueue
// -> we may or may not have set isReleased yet but will always wait for the
// lock on bufferQueue to release buffers
// 确保没有release,并且可用buffer数量小于所需的buffer才执行后续流程
if (isReleased.get() || bufferQueue.getAvailableBufferSize() >= numRequiredBuffers) {
isWaitingForFloatingBuffers = false;
return notificationResult;
}
// 添加浮动buffer
bufferQueue.addFloatingBuffer(buffer);
// 如果可用buffer数量和所需buffer数量一致,返回不再需要新的buffer
if (bufferQueue.getAvailableBufferSize() == numRequiredBuffers) {
isWaitingForFloatingBuffers = false;
notificationResult = NotificationResult.BUFFER_USED_NO_NEED_MORE;
} else {
// 否则返回仍需新的buffer
notificationResult = NotificationResult.BUFFER_USED_NEED_MORE;
}
}
// 如果unannouncedCredit在加1之前为0,通知上游,下游可以接收数据
if (unannouncedCredit.getAndAdd(1) == 0) {
notifyCreditAvailable();
}
} catch (Throwable t) {
setError(t);
}
return notificationResult;
}
下面我们回到onBuffer
方法。继续跟踪,我们发现onBuffer
方法在CreditBasedPartitionRequestClientHandler
的decodeBufferOrEvent
方法中调用。这个方法负责处理接收到的数据。数据的类型可能为buffer或者event。代码如下:
private void decodeBufferOrEvent(RemoteInputChannel inputChannel, NettyMessage.BufferResponse bufferOrEvent) throws Throwable {
try {
ByteBuf nettyBuffer = bufferOrEvent.getNettyBuffer();
final int receivedSize = nettyBuffer.readableBytes();
// 如果是buffer
if (bufferOrEvent.isBuffer()) {
// ---- Buffer ------------------------------------------------
// Early return for empty buffers. Otherwise Netty's readBytes() throws an
// IndexOutOfBoundsException.
// 如果收到字节数为0,调用RemoteInputChannel的onEmptyBuffer方法
if (receivedSize == 0) {
inputChannel.onEmptyBuffer(bufferOrEvent.sequenceNumber, bufferOrEvent.backlog);
return;
}
// 请求一个空的buffer
Buffer buffer = inputChannel.requestBuffer();
if (buffer != null) {
// 写入网络读取到的数据至buffer中
nettyBuffer.readBytes(buffer.asByteBuf(), receivedSize);
// 设置压缩
buffer.setCompressed(bufferOrEvent.isCompressed);
// 调用onBuffer处理方法
inputChannel.onBuffer(buffer, bufferOrEvent.sequenceNumber, bufferOrEvent.backlog);
} else if (inputChannel.isReleased()) {
// 如果channel已经release,调用取消请求方法
cancelRequestFor(bufferOrEvent.receiverId);
} else {
throw new IllegalStateException("No buffer available in credit-based input channel.");
}
} else {
// 如果是事件(event),创建一个memSeg ,数据为event内容
// 再把它包裹进networkBuffer对象,通过onBuffer方法教给RemoteInputChannel处理
// ---- Event -------------------------------------------------
// TODO We can just keep the serialized data in the Netty buffer and release it later at the reader
byte[] byteArray = new byte[receivedSize];
nettyBuffer.readBytes(byteArray);
MemorySegment memSeg = MemorySegmentFactory.wrap(byteArray);
Buffer buffer = new NetworkBuffer(memSeg, FreeingBufferRecycler.INSTANCE, false, receivedSize);
inputChannel.onBuffer(buffer, bufferOrEvent.sequenceNumber, bufferOrEvent.backlog);
}
} finally {
// 释放netty的buffer
bufferOrEvent.releaseBuffer();
}
}
继续追踪此方法的调用链到decodeMsg
方法。该方法的部分源代码如下:
private void decodeMsg(Object msg) throws Throwable {
final Class> msgClazz = msg.getClass();
// ---- Buffer --------------------------------------------------------
if (msgClazz == NettyMessage.BufferResponse.class) {
NettyMessage.BufferResponse bufferOrEvent = (NettyMessage.BufferResponse) msg;
// 获取接收此buffer的input channel
RemoteInputChannel inputChannel = inputChannels.get(bufferOrEvent.receiverId);
if (inputChannel == null) {
bufferOrEvent.releaseBuffer();
cancelRequestFor(bufferOrEvent.receiverId);
return;
}
// 调用decodeBufferOrEvent方法
decodeBufferOrEvent(inputChannel, bufferOrEvent);
} else if (msgClazz == NettyMessage.ErrorResponse.class) {
// ---- Error ---------------------------------------------------------
// 剩余代码省略
} else {
throw new IllegalStateException("Received unknown message from producer: " + msg.getClass());
}
}
继续追踪,我们到netty框架的channelRead
方法。代码如下:
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
try {
decodeMsg(msg);
} catch (Throwable t) {
notifyAllChannelsOfErrorAndClose(t);
}
}
到此,整个数据的读取流程分析完毕。
本博客为作者原创,欢迎大家参与讨论和批评指正。如需转载请注明出处。