WSDM 2023 2024时空&时序论文总结

WSDM

WSDM(Web Search and Data Mining)是CCF B类会议,清华A类会议(一年就100来篇怎么能不算顶会!)
WSDM 2024将在2024年3月4日-3月8日在墨西哥梅里达(Mérida, México)举行。目前官网已经放出了所有被录用论文的表单(链接在相关链接给出)。本次会议共收录112篇论文。
WSDM 2023在2023年2月27日到3月3日在新加坡举行,公布的录用结果为,共收到投稿690篇,录用123篇,录用率为17.8%
本文收集WSDM 2023和2024上有关时空数据(包含时空预测(24均为时空预测)、轨迹分类,物流到达时间估计)和时间序列(预测和插补)的相关论文,便于大家交流学习。

时空数据(spatial-temporal data)

1. CityCAN: Causal Attention Network for Citywide Spatio-Temporal Forecasting

**作者:**Chengxin Wang (National University of Singapore)*; Yuxuan Liang (The Hong Kong University of Science and Technology (Guangzhou)); Gary Tan (National University of Singapore)

**关键词:**因果推断,时空预测

2. CreST: A Credible Spatiotemporal Learning Framework for Uncertainty-aware Traffic Forecasting

**作者:*Zhengyang Zhou (University of Science and Technology of China); Jiahao Shi (University Of Science And Technology Of China); Hongbo Zhang (University of Science and Technology of China); Qiongyu Chen (University of Science and Technology of China); Xu Wang (University of Science and Technology of China); Hongyang Chen (Zhejiang Lab); Yang Wang (University of Science and Technology of China)

**关键词:**可靠性,不确定性感知,交通预测

3. MultiSPANS: A Multi-range Spatial-Temporal Transformer Network for Traffic Forecast via Structural Entropy Optimization

**作者:**Dongcheng Zou (Beihang University)*; Senzhang Wang (Central South University); li xuefeng (Beihang university); Hao Peng (Beihang University); Yuandong Wang (Tsinghua University); Chunyang Liu (didichuxing); KEHUA SHENG ( Beijing DiDi Infinity Technology and Development Co., Ltd. ); Bo Zhang (Didi Chuxing)

**关键词:**交通预测,Transformer

接下来均为WSDM 2023(有论文链接)

4. A Multi-graph Fusion Based Spatiotemporal Dynamic Learning Framework

**作者:*Xu Wang (University of Science and Technology of China); Lianliang Chen (University of Science and Technology of China); Hongbo Zhang (University of Science and Technology of China); Pengkun Wang (University of Science and Technology of China); Zhengyang Zhou (University of Science and Technology of China); Yang Wang (University of Science and Technology of China)

**论文:**https://dl.acm.org/doi/abs/10.1145/3539597.3570396

**关键词:**时空预测,时空动态图

WSDM 2023 2024时空&时序论文总结_第1张图片

5. Range Restricted Route Recommendation Based on Spatial Keyword

**作者:*Hongwei Tang (Soochow University); Detian Zhang (Soochow University)

**论文:**https://dl.acm.org/doi/abs/10.1145/3539597.3570434

**关键词:**路径推荐

6. S^2TUL: A Semi-Supervised Framework for Trajectory-User Linking

**作者:**Liwei Deng (University of Electronic Science and Technology of China); Hao Sun (Peking University); Yan Zhao (Aalborg University); Shuncheng Liu (University of Electronic Science and Technology of China); Kai Zheng (University of Electronic Science and Technology of China)*‘

**论文:**https://dl.acm.org/doi/abs/10.1145/3539597.3570410

**关键词:**Trajectory-User Linking (TUL) ,轨迹分类,半监督

7. Inductive Graph Transformer for Delivery Time Estimation

**作者:**Xin Zhou (Nanyang Technological University)*; jinglong wang (Alibaba Group); Yong Liu (Nanyang Technological University); xingyu wu (Alibaba Group); Zhiqi Shen (NTU); Cyril Leung (NTU)

**论文:**https://dl.acm.org/doi/abs/10.1145/3539597.3570409

**arXiv:**https://arxiv.org/abs/2211.02863

**代码:**https://github.com/enoche/IGT-WSDM23

**关键词:**物流到达时间估计,图Transformer

WSDM 2023 2024时空&时序论文总结_第2张图片

时间序列(Time Series)

1. NeuralReconciler for Hierarchical Time Series Forecasting

**作者:*Shiyu Wang (antgroup)

**关键词:**时间序列预测,分层级

2. Continuous-time Autoencoders for Regular and Irregular Time Series Imputation

**作者:*Hyowon Wi (Yonsei University); Yehjin Shin (Yonsei University); Noseong Park (Yonsei University)

关键词:(不规则)时间序列插补

接下来均为WSDM 2023(有论文链接)

3. Telecommunication Traffic Forecasting via Multi-task Learning

**作者:*Xiaochuan Gou (King Abdullah University of Science and Technology); Xiangliang Zhang (University of Notre Dame)

**论文:**https://dl.acm.org/doi/abs/10.1145/3539597.3570440

**关键词:**通信流量预测,多任务学习

4. Adversarial Autoencoder for Unsupervised Time Series Anomaly Detection and Interpretation

**作者:**Xuanhao Chen (University of Electronic Science and Technology of China)*; Liwei Deng (University of Electronic Science and Technology of China); Yan Zhao (Aalborg University); Kai Zheng (University of Electronic Science and Technology of China)

**论文:**https://dl.acm.org/doi/abs/10.1145/3539597.3570371

**关键词:**时间序列异常检测,可解释性,无监督,自编码器

相关链接:

WSDM 2024全部接受论文:https://www.wsdm-conference.org/2024/accepted-papers/

WSDM 2023 全部接收论文:https://www.wsdm-conference.org/2023/program/accepted-papers

SIGMOD 2023 时序&时空数据论文

VLDB 2023 时空&时序论文汇总

ICDE 2023 时空数据论文

KDD 2023 时空数据论文

WWW 2023 时空数据论文

IJCAI 2023 时空数据论文

ECML PKDD 2023 时空数据论文

CIKM 2023 时空数据论文总结

ICLR 2024投稿时空数据论文汇总

NeurIPS 2023 时间序列(Time Series)论文总结

NeurIPS 2023 时空数据论文总结

3 时间序列(Time Series)论文总结](https://zhuanlan.zhihu.com/p/659088918)

NeurIPS 2023 时空数据论文总结

你可能感兴趣的:(时空数据,大数据,智慧城市,pytorch,数据挖掘,论文阅读,深度学习,机器学习)