1、颜色及代码
cnames = {
'aliceblue': '#F0F8FF',
'antiquewhite': '#FAEBD7',
'aqua': '#00FFFF',
'aquamarine': '#7FFFD4',
'azure': '#F0FFFF',
'beige': '#F5F5DC',
'bisque': '#FFE4C4',
'black': '#000000',
'blanchedalmond': '#FFEBCD',
'blue': '#0000FF',
'blueviolet': '#8A2BE2',
'brown': '#A52A2A',
'burlywood': '#DEB887',
'cadetblue': '#5F9EA0',
'chartreuse': '#7FFF00',
'chocolate': '#D2691E',
'coral': '#FF7F50',
'cornflowerblue': '#6495ED',
'cornsilk': '#FFF8DC',
'crimson': '#DC143C',
'cyan': '#00FFFF',
'darkblue': '#00008B',
'darkcyan': '#008B8B',
'darkgoldenrod': '#B8860B',
'darkgray': '#A9A9A9',
'darkgreen': '#006400',
'darkkhaki': '#BDB76B',
'darkmagenta': '#8B008B',
'darkolivegreen': '#556B2F',
'darkorange': '#FF8C00',
'darkorchid': '#9932CC',
'darkred': '#8B0000',
'darksalmon': '#E9967A',
'darkseagreen': '#8FBC8F',
'darkslateblue': '#483D8B',
'darkslategray': '#2F4F4F',
'darkturquoise': '#00CED1',
'darkviolet': '#9400D3',
'deeppink': '#FF1493',
'deepskyblue': '#00BFFF',
'dimgray': '#696969',
'dodgerblue': '#1E90FF',
'firebrick': '#B22222',
'floralwhite': '#FFFAF0',
'forestgreen': '#228B22',
'fuchsia': '#FF00FF',
'gainsboro': '#DCDCDC',
'ghostwhite': '#F8F8FF',
'gold': '#FFD700',
'goldenrod': '#DAA520',
'gray': '#808080',
'green': '#008000',
'greenyellow': '#ADFF2F',
'honeydew': '#F0FFF0',
'hotpink': '#FF69B4',
'indianred': '#CD5C5C',
'indigo': '#4B0082',
'ivory': '#FFFFF0',
'khaki': '#F0E68C',
'lavender': '#E6E6FA',
'lavenderblush': '#FFF0F5',
'lawngreen': '#7CFC00',
'lemonchiffon': '#FFFACD',
'lightblue': '#ADD8E6',
'lightcoral': '#F08080',
'lightcyan': '#E0FFFF',
'lightgoldenrodyellow': '#FAFAD2',
'lightgreen': '#90EE90',
'lightgray': '#D3D3D3',
'lightpink': '#FFB6C1',
'lightsalmon': '#FFA07A',
'lightseagreen': '#20B2AA',
'lightskyblue': '#87CEFA',
'lightslategray': '#778899',
'lightsteelblue': '#B0C4DE',
'lightyellow': '#FFFFE0',
'lime': '#00FF00',
'limegreen': '#32CD32',
'linen': '#FAF0E6',
'magenta': '#FF00FF',
'maroon': '#800000',
'mediumaquamarine': '#66CDAA',
'mediumblue': '#0000CD',
'mediumorchid': '#BA55D3',
'mediumpurple': '#9370DB',
'mediumseagreen': '#3CB371',
'mediumslateblue': '#7B68EE',
'mediumspringgreen': '#00FA9A',
'mediumturquoise': '#48D1CC',
'mediumvioletred': '#C71585',
'midnightblue': '#191970',
'mintcream': '#F5FFFA',
'mistyrose': '#FFE4E1',
'moccasin': '#FFE4B5',
'navajowhite': '#FFDEAD',
'navy': '#000080',
'oldlace': '#FDF5E6',
'olive': '#808000',
'olivedrab': '#6B8E23',
'orange': '#FFA500',
'orangered': '#FF4500',
'orchid': '#DA70D6',
'palegoldenrod': '#EEE8AA',
'palegreen': '#98FB98',
'paleturquoise': '#AFEEEE',
'palevioletred': '#DB7093',
'papayawhip': '#FFEFD5',
'peachpuff': '#FFDAB9',
'peru': '#CD853F',
'pink': '#FFC0CB',
'plum': '#DDA0DD',
'powderblue': '#B0E0E6',
'purple': '#800080',
'red': '#FF0000',
'rosybrown': '#BC8F8F',
'royalblue': '#4169E1',
'saddlebrown': '#8B4513',
'salmon': '#FA8072',
'sandybrown': '#FAA460',
'seagreen': '#2E8B57',
'seashell': '#FFF5EE',
'sienna': '#A0522D',
'silver': '#C0C0C0',
'skyblue': '#87CEEB',
'slateblue': '#6A5ACD',
'slategray': '#708090',
'snow': '#FFFAFA',
'springgreen': '#00FF7F',
'steelblue': '#4682B4',
'tan': '#D2B48C',
'teal': '#008080',
'thistle': '#D8BFD8',
'tomato': '#FF6347',
'turquoise': '#40E0D0',
'violet': '#EE82EE',
'wheat': '#F5DEB3',
'white': '#FFFFFF',
'whitesmoke': '#F5F5F5',
'yellow': '#FFFF00',
'yellowgreen': '#9ACD32'}
2、混淆矩阵画图
truth= [[3, 98], [2, 71], [3, 62]
y_true=[]
for i in range (len(truth)):
y_true.append(truth[i][0])
y_pred0= [[3, 102], [71, 2], [3, 62],
print("L1=", len(y_pred0))
y_pred0 = [[10] if x == [] else x for x in y_pred0]
y_pred = []
for j in range (len(y_pred0)):
y_pred.append(y_pred0[j][0])
for j in range(len(y_pred)):
if y_pred[j]>6:
y_pred[j]=7
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
C = confusion_matrix(y_true=y_true, y_pred=y_pred)
print("Confusion Matrix: ")
print(C)
plt.matshow(C, cmap=plt.cm.Reds)
for i in range(len(C)):
for j in range(len(C)):
plt.annotate(C[j, i], xy=(i, j), horizontalalignment='center', verticalalignment='center',color="white" if C[j, i] > 500 else "black")
Emotion_kinds=8
plt.ylabel('True label', fontdict={'family': 'Times New Roman', 'size': 15})
plt.xlabel('Predicted label', fontdict={'family': 'Times New Roman', 'size': 15})
labels = ['CS', 'Medical', 'Civil', 'ECE', 'biochemistry', 'MAE', 'Psychology','others']
plt.yticks(range(Emotion_kinds), labels,fontdict={'family': 'Times New Roman', 'size': 10})
plt.xticks(range(Emotion_kinds), labels, rotation=45)
plt.show()
import itertools
import numpy as np
import matplotlib.pyplot as plt
import torch
from sklearn.metrics import confusion_matrix
C=[[ ]]
print("Confusion Matrix: ")
print(C)
fig, ax = plt.subplots()
im = ax.imshow(C, interpolation='nearest', cmap=plt.cm.Reds)
ax.figure.colorbar(im, ax=ax)
plt.tight_layout()
for i in range(len(C)):
for j in range(len(C)):
plt.annotate(C[j, i], xy=(i, j), horizontalalignment='center', verticalalignment='center',color="white" if C[j, i] > 2000 else "black")
Emotion_kinds=8
plt.ylabel('True label', fontdict={'family': 'Times New Roman', 'size': 15})
plt.xlabel('Predicted label', fontdict={'family': 'Times New Roman', 'size': 15})
labels = ['CS', 'Medical', 'Civil', 'ECE', 'biochemistry', 'MAE', 'Psychology', 'others']
plt.yticks(range(Emotion_kinds), labels, fontdict={'family': 'Times New Roman', 'size': 10})
plt.xticks(range(Emotion_kinds), labels, rotation=45)
plt.savefig('WebOfScience-bert-WOSv-2rm.pdf', format='pdf',bbox_inches="tight")
plt.savefig('WebOfScience-bert-WOSv-2rm.png', format='png', dpi=300, bbox_inches="tight")
plt.tight_layout()
plt.show()