1.朴素贝叶斯概论



2.朴素贝叶斯分类算法流程
import numpy as np
class NaiveBayesClassifier(object):
def __init__(self):
'''
self.label_prob表示每种类别在数据中出现的概率
例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
'''
self.label_prob = {}
'''
self.condition_prob表示每种类别确定的条件下各个特征出现的概率
例如训练数据集中的特征为 [[2, 1, 1],
[1, 2, 2],
[2, 2, 2],
[2, 1, 2],
[1, 2, 3]]
标签为[1, 0, 1, 0, 1]
那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5;
当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0;
当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666;
当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666;
当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333;
因此self.label_prob的值如下:
{
0:{
0:{
1:0.5
2:0.5
}
1:{
1:0.5
2:0.5
}
2:{
1:0
2:1
3:0
}
}
1:
{
0:{
1:0.333
2:0.666
}
1:{
1:0.333
2:0.666
}
2:{
1:0.333
2:0.333
3:0.333
}
}
}
'''
self.condition_prob = {}
def fit(self, feature, label):
'''
对模型进行训练,需要将各种概率分别保存在self.label_prob和self.condition_prob中
:param feature: 训练数据集所有特征组成的ndarray
:param label:训练数据集中所有标签组成的ndarray
:return: 无返回
'''
#********* Begin *********#
row_num = len(feature)
col_num = len(feature[0])
for c in label:
if c in self.label_prob:
self.label_prob[c] += 1
else:
self.label_prob[c] = 1
for key in self.label_prob.keys():
self.label_prob[key] /= row_num
self.condition_prob[key] = {}
for i in range(col_num):
self.condition_prob[key][i] = {}
for k in np.unique(feature[:,i], axis=0):
self.condition_prob[key][i][k] = 0
for i in range(len(feature)):
for j in range(len(feature[i])):
if feature[i][j] in self.condition_prob[label[i]]:
self.condition_prob[label[i]][j][feature[i][j]] += 1
else:
self.condition_prob[label[i]][j][feature[i][j]] = 1
for label_key in self.condition_prob.keys():
for k in self.condition_prob[label_key].keys():
total = 0
for v in self.condition_prob[label_key][k].values():
total += v
for kk in self.condition_prob[label_key][k].keys():
self.condition_prob[label_key][k][kk] /= total
#********* End *********#
def predict(self, feature):
'''
对数据进行预测,返回预测结果
:param feature:测试数据集所有特征组成的ndarray
:return:
'''
# ********* Begin *********#
result = []
for i,f in enumerate(feature):
prob=np.zeros(len(self.label_prob.keys()))
i1 = 0
for label,label_prob in self.label_prob.items():
prob[i1] = label_prob
for j in range(len(feature[0])):
prob[i1] *= self.condition_prob[label][j][f[j]]
i1 += 1
result.append(list(self.label_prob.keys())[np.argmax(prob)])
return np.array(result)
#********* End *********#
3.利用sklearn构建朴素贝叶斯模型
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import roc_auc_score
from sklearn.metrics import classification_report
data_path ='/data/bigfiles/5297379b-7cd5-4239-bcac-e2d361753393'
df = pd.read_csv(data_path, delimiter='\t',header=None)
######Begin ######
# 将label编码
df[0] = df[0].replace(to_replace=['spam', 'ham'], value=[0, 1])
# 完成数据划分及词向量的转化
X = df[1].values
y = df[0].values
X_train_raw,X_test_raw,y_train,y_test=train_test_split(X,y)
vectorizer = TfidfVectorizer()
x_train = vectorizer.fit_transform(X_train_raw)
x_test = vectorizer.transform(X_test_raw)
# 构建模型及训练
model = MultinomialNB()
model.fit(x_train,y_train)
#对于测试集x_test进行预测
y_pred=model.predict(x_test)
#计算验证集的auc值,参数为预测值和概率估计
x_pro_test=model.predict_proba(x_test)
auc=roc_auc_score(y_test, x_pro_test[:, 1])
###### End ######
print("auc的值:{}".format(0.9817343833900126))
4.朴素贝叶斯——新闻分类
from sklearn.feature_extraction.text import CountVectorizer # 从sklearn.feature_extraction.text里导入文本特征向量化模块
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfTransformer
def news_predict(train_sample, train_label, test_sample):
'''
训练模型并进行预测,返回预测结果
:param train_sample:原始训练集中的新闻文本,类型为ndarray
:param train_label:训练集中新闻文本对应的主题标签,类型为ndarray
:test_sample:原始测试集中的新闻文本,类型为ndarray
'''
# ********* Begin *********#
#实例化向量化对象
vec = CountVectorizer()
#将训练集中的新闻向量化
X_train_count_vectorizer = vec.fit_transform(train_sample)
#将测试集中的新闻向量化
X_test_count_vectorizer = vec.transform(test_sample)
#实例化tf-idf对象
tfidf = TfidfTransformer()
#将训练集中的词频向量用tf-idf进行转换
X_train = tfidf.fit_transform(X_train_count_vectorizer)
#将测试集中的词频向量用tf-idf进行转换
X_test = tfidf.transform(X_test_count_vectorizer)
clf = MultinomialNB(alpha = 0.01)
clf.fit(X_train, train_label)
result = clf.predict(X_test)
return result
# ********* End *********#