目录
前言
堆
堆的常用操作
堆的实现(大根堆)
1. 堆的存储与表示
2. 访问堆顶元素
3. 元素入堆
4. 堆顶元素出堆
Top-k 问题
方法一:遍历选择
方法二:排序
方法三:堆
总结
秋招复习之堆。
「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如图所示。
堆作为完全二叉树的一个特例,具有以下特性。
许多编程语言提供的是「优先队列 priority queue」,这是一种抽象的数据结构,定义为具有优先级排序的队列。
实际上,堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 flag
或修改 Comparator
实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:
/* 初始化堆 */
// 初始化小顶堆
Queue minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue maxHeap = new PriorityQueue<>((a, b) -> b - a);
/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);
/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();
/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
/* 初始化堆 */
// 初始化小顶堆
priority_queue, greater> minHeap;
// 初始化大顶堆
priority_queue, less> maxHeap;
/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);
/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();
/* 输入列表并建堆 */
vector input{1, 3, 2, 5, 4};
priority_queue, greater> minHeap(input.begin(), input.end());
完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆。
将索引映射公式封装成函数
/* 获取左子节点的索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取右子节点的索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取父节点的索引 */
int parent(int i) {
return (i - 1) / 2; // 向下整除
}
/* 获取左子节点的索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取右子节点的索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取父节点的索引 */
int parent(int i) {
return (i - 1) / 2; // 向下整除
}
/* 访问堆顶元素 */
int peek() {
return maxHeap.get(0);
}
/* 访问堆顶元素 */
int peek() {
return maxHeap[0];
}
给定元素 val
,我们首先将其添加到堆底。添加之后,由于 val
可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。
考虑从入堆节点开始,从底至顶执行堆化。如图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。(就是一直和父比较,大就换)
设节点总数为 n ,则树的高度为 O(logN) 。由此可知,堆化操作的循环轮数最多为 O(logN) ,元素入堆操作的时间复杂度为 O(logN) 。
/* 元素入堆 */
void push(int val) {
// 添加节点
maxHeap.add(val);
// 从底至顶堆化
siftUp(size() - 1);
}
/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {
while (true) {
// 获取节点 i 的父节点
int p = parent(i);
// 当“越过根节点”或“节点无须修复”时,结束堆化
if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
break;
// 交换两节点
swap(i, p);
// 循环向上堆化
i = p;
}
}
/* 元素入堆 */
void push(int val) {
// 添加节点
maxHeap.push_back(val);
// 从底至顶堆化
siftUp(size() - 1);
}
/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {
while (true) {
// 获取节点 i 的父节点
int p = parent(i);
// 当“越过根节点”或“节点无须修复”时,结束堆化
if (p < 0 || maxHeap[i] <= maxHeap[p])
break;
// 交换两节点
swap(maxHeap[i], maxHeap[p]);
// 循环向上堆化
i = p;
}
}
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。
如图所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。
与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(logn) 。代码如下所示:
/* 元素出堆 */
int pop() {
// 判空处理
if (isEmpty())
throw new IndexOutOfBoundsException();
// 交换根节点与最右叶节点(交换首元素与尾元素)
swap(0, size() - 1);
// 删除节点
int val = maxHeap.remove(size() - 1);
// 从顶至底堆化
siftDown(0);
// 返回堆顶元素
return val;
}
/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = left(i), r = right(i), ma = i;
if (l < size() && maxHeap.get(l) > maxHeap.get(ma))
ma = l;
if (r < size() && maxHeap.get(r) > maxHeap.get(ma))
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i)
break;
// 交换两节点
swap(i, ma);
// 循环向下堆化
i = ma;
}
}
/* 元素出堆 */
void pop() {
// 判空处理
if (isEmpty()) {
throw out_of_range("堆为空");
}
// 交换根节点与最右叶节点(交换首元素与尾元素)
swap(maxHeap[0], maxHeap[size() - 1]);
// 删除节点
maxHeap.pop_back();
// 从顶至底堆化
siftDown(0);
}
/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = left(i), r = right(i), ma = i;
if (l < size() && maxHeap[l] > maxHeap[ma])
ma = l;
if (r < size() && maxHeap[r] > maxHeap[ma])
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i)
break;
swap(maxHeap[i], maxHeap[ma]);
// 循环向下堆化
i = ma;
}
}
Q:给定一个长度为 n的无序数组 nums
,请返回数组中最大的 k个元素。
其时间复杂度趋向于O(n2) ,非常耗时。
当 k=n 时,可以得到完整的有序序列,此时等价于“选择排序”算法。
如图所示,我们可以先对数组 nums
进行排序,再返回最右边的 k 个元素,时间复杂度为 O(nlogn) 。
显然,该方法“超额”完成任务了,因为我们只需找出最大的k个元素即可,而不需要排序其他元素。
可以基于堆更加高效地解决 Top-k 问题,流程如图所示。
天才!!!
/* 基于堆查找数组中最大的 k 个元素 */
Queue topKHeap(int[] nums, int k) {
// 初始化小顶堆
Queue heap = new PriorityQueue();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.offer(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.poll();
heap.offer(nums[i]);
}
}
return heap;
}
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue, greater> topKHeap(vector &nums, int k) {
// 初始化小顶堆
priority_queue, greater> heap;
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.push(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.size(); i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.top()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
总共执行了 n轮入堆和出堆,堆的最大长度为 k ,因此时间复杂度为 O(nlogk) 。该方法的效率很高,当 k 较小时,时间复杂度趋向 O(n) ;当 n 较大时,时间复杂度不会超过 O(nlogn) 。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 k个元素的动态更新。