Transformer-MM-Explainability

Transformer-MM-Explainability_第1张图片
Transformer-MM-Explainability_第2张图片
two modalities are separated by the [SEP] token,the numbers in each attention module represent the Eq. number.
在这里插入图片描述
E h _h h is the mean, ∇ \nabla A := ∂ y t ∂ A {∂y_t}\over∂A Aytfor y t y_t yt which is the model’s output. ⊙ \odot is the Hadamard product,remove the negative contributions before averaging.
在这里插入图片描述
aggregated self-attention matrix R q q ^{qq} qq,previous layers’ mixture of context is embodied by R q k ^{qk} qk.

感想

作者的实验在coco和ImageNet验证集上做的,不好follow

你可能感兴趣的:(可解释机器学习,transformer,深度学习,人工智能,算法,机器学习,神经网络)