【Python机器学习】决策树的优缺点

控制决策树模型复杂度的参数是预剪枝参数,它在树完全展开之前停止树的构造。

决策树的优点:

1、得到的模型很容易可视化

2、算法完全不受数据缩放的影响

决策树算法不需要特征预处理,比如归一化或标准化。特别是特征的尺度完全不一样时或二元特征和连续特征同时存在时,决策树的效果很好。

决策树的缺点是,即使做了预剪枝,它也经常过拟合,泛化性能很差,所以大多数应用中,往往使用集成方法来替代单颗决策树。

你可能感兴趣的:(Python机器学习,机器学习,python,决策树,人工智能)