- 深度学习模型在汽车自动驾驶领域的应用
eso1983
深度学习汽车自动驾驶
汽车自动驾驶是一个高度复杂的系统,深度学习和计算技术在其中扮演核心角色。今天简单介绍一下自动驾驶领域常用的深度学习模型及其计算原理的解析。1.深度学习模型分类及应用场景1.1视觉感知模型CNN(卷积神经网络)应用:图像分类、物体检测(车辆、行人、交通标志)、语义分割(道路、车道线)。典型模型:YOLO:实时目标检测,低延迟特性适合自动驾驶。MaskR-CNN:结合检测与像素级分割,用于精确场景理解
- 室内家具检测数据集VOC+YOLO格式7928张10类别
FL1623863129
数据集深度学习机器学习人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):7928标注数量(xml文件个数):7928标注数量(txt文件个数):7928标注类别数:10标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Bed","Bo
- 【YOLO11改进 - Backbone主干】LSKNet:旋转目标检测新网络,通过DW卷积核和空间选择机制来动态调整目标的感受野
YOLO大师
目标检测网络人工智能yolov11YOLOpython计算机视觉
YOLOv11目标检测创新改进与实战案例专栏文章目录:YOLOv11创新改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv11目标检测创新改进与实战案例文章目录YOLOv11目标检测创新改进与实战案例专栏介绍摘要创新点文章链接基本原理**LSKNet的结构**3.2大核卷积3.3空间核选择核心代码YOLO11引入代码tasks注册步骤1
- YOLOv10改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文记录的是利用大核选择模块LSK优化YOLOv10的目标检测网络模型。在大尺寸图像中的小目标检测任务中,一直是个难题,无法仅基于外观实现较好的识别,因此需要广泛的上下文信息进行辅助。但不同物体所需的上下文信息范围不同,为了更好地对这些特性进行建模,本文利用大核选择模块二次创新C3k2,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中
- YOLOv10改进,YOLOv10检测头融合DynamicHead,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能深度学习计算机视觉
摘要作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别×空间×通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自注意力机制的构建。然而,直接在所有维度上学习注意力函数过于困难,且计算成本过高。因此,作者提出通过分别在特征的每个特定维度上部署注意力机制,即在级
- 用engine引擎文件在Jetson上面进行推理(YOLOv8)
薇憨
深度学习-硬件篇YOLOpythonpycharm深度学习pytorch嵌入式硬件
1.pt文件,推理在Jetson上可以通过predict.py脚本用.pt权重文件进行推理脚本如下:importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#selectyourmodel.ptpathmodel.pred
- 通过TenSorRT转换后的engine引擎文件进行验证的脚本
薇憨
深度学习-硬件篇嵌入式硬件mcupython
YOLOv8算法验证pt文件的精度脚本一般都很常见,工程项目里面一般会有importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#权重文件路径model.val(data='/data.yaml',#yaml文件路径spl
- yolov8使用Python训练识别
枫林古月
YOLO从零开始YOLOpython开发语言
环境要求:根据《yolov8训练环境搭建》搭建好运行环境参考文献:1、yolo官方文档python版本:https://docs.ultralytics.com/usage/python/2、github文档https://github.com/ultralytics/ultralytics/blob/main/README.zh-CN.md3、标定源数据的生成使用labelImg来标定类别,输出
- YOLOv10-1.1部分代码阅读笔记-tasks.py
红色的山茶花
YOLO笔记深度学习
tasks.pyultralytics\nn\tasks.py目录tasks.py1.所需的库和模块2.classBaseModel(nn.Module):3.classDetectionModel(BaseModel):4.classOBBModel(DetectionModel):5.classSegmentationModel(DetectionModel):6.classPoseModel
- YOLOv10-1.1部分代码阅读笔记-checks.py
红色的山茶花
YOLO笔记深度学习
checks.pyultralytics\utils\checks.py目录checks.py1.所需的库和模块2.defparse_requirements(file_path=ROOT.parent/"requirements.txt",package=""):3.defparse_version(version="0.0.0")->tuple:4.defis_ascii(s)->bool:5
- YOLOv10-1.1部分代码阅读笔记-loss.py
红色的山茶花
YOLO笔记深度学习
loss.pyultralytics\utils\loss.py目录loss.py1.所需的库和模块2.classVarifocalLoss(nn.Module):3.classFocalLoss(nn.Module):4.classBboxLoss(nn.Module):5.classRotatedBboxLoss(BboxLoss):6.classKeypointLoss(nn.Module)
- YOLOv9-0.1部分代码阅读笔记-common.py
红色的山茶花
笔记
common.pymodels\common.py目录common.py1.所需的库和模块2.defautopad(k,p=None,d=1):3.classConv(nn.Module):4.classAConv(nn.Module):5.classADown(nn.Module):6.classRepConvN(nn.Module):7.classSP(nn.Module):8.classMP
- YOLOv7-0.1部分代码阅读笔记-common.py
红色的山茶花
YOLO笔记
common.pymodels\common.py目录common.py1.所需的库和模块2.defautopad(k,p=None):3.classMP(nn.Module):4.classSP(nn.Module):5.classReOrg(nn.Module):6.classConcat(nn.Module):7.classChuncat(nn.Module):8.classShortcut
- YOLOv8-ultralytics-8.2.103部分代码阅读笔记-block.py
红色的山茶花
YOLO笔记深度学习
block.pyultralytics\nn\modules\block.py目录block.py1.所需的库和模块2.classDFL(nn.Module):3.classProto(nn.Module):4.classHGStem(nn.Module):5.classHGBlock(nn.Module):6.classSPP(nn.Module):7.classSPPF(nn.Module):
- 基于深度学习的行人检测与识别系统:YOLOv5、YOLOv8、YOLOv10与UI界面的实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
引言行人检测与识别技术作为计算机视觉领域的一个重要应用,广泛应用于智能监控、自动驾驶、公共安全等多个领域。行人检测系统的目标是通过图像或视频中的内容,自动识别并定位行人,这项任务在复杂环境中面临着不同的挑战,如多样的行人姿态、遮挡、光照变化等。近年来,深度学习的进步,尤其是目标检测领域的快速发展,为行人检测提供了强有力的支持。YOLO(YouOnlyLookOnce)系列模型,作为目前目标检测领域
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- YOLOv10:面向下一代目标检测模型的创新探索
AgriTube
YOLO
随着计算机视觉技术的飞速发展,目标检测模型在各类应用场景中的重要性与日俱增。从自动驾驶到智能监控,目标检测的准确性和实时性都直接影响着应用的效果和用户体验。YOLO(YouOnlyLookOnce)系列作为实时目标检测的代表性模型,自发布以来便因其速度与精度的平衡性得到了广泛关注和应用。如今,随着YOLOv10的即将推出,我们站在技术的前沿,思考如何对这一模型进行革新,使其在面对复杂多变的场景时表
- YOLOv5:目标检测新星,解锁高性能实时识别
殷连靖Harlan
YOLOv5:目标检测新星,解锁高性能实时识别【下载地址】yolov5改进策略案例分析资源合集YOLOv5,作为目标检测领域的一颗明星,基于经典的YOLOv4算法进行了一系列创新性优化,显著提升了检测速度与精度。本资源集合深入解析YOLOv5的设计理念与技术细节,旨在帮助开发者和研究者更全面地理解并应用这些进步。从数据预处理到网络架构设计,再到后处理策略,我们逐一探讨其核心改进之处项目地址:htt
- YOLO系列之训练环境(GPU)搭建篇
w94ghz
YOLO改进系列YOLOv8改进系列YOLO深度学习人工智能python目标检测
YOLOv8专栏导航:点击此处跳转Pytorch环境配置(Windows)Anaconda安装此处下载安装即可⭐温馨提示:安装路径
- YOLOv10改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含二次创新)
Limiiiing
YOLOv10改进专栏YOLO目标跟踪计算机视觉深度学习
一、本文介绍本文记录的是基于EMA模块的YOLOv10目标检测改进方法研究。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv10的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF
- 基于YOLOv11无人机视角船舶检测系统:项目概述与技术实现
qq1309399183
计算机视觉实战项目集合YOLO无人机人工智能计算机视觉无人机视角船舶检测yolo11改进yolo11涨点
文章目录YOLOv11无人机视角船舶检测系统:项目概述与技术实现项目背景项目简介核心目标YOLOv11的技术优势1.**更强的特征提取能力**2.**改进的多尺度检测**3.**轻量化设计**4.**实时处理能力**数据准备与模型训练1.**数据集构建**2.**模型训练**系统功能与使用方法1.**实时目标检测**2.**静态图片检测**3.**视频文件处理**4.**多种目标类别支持**安装与
- 探索高效嵌入式视觉应用:RK3588/RK3568/RK3566 Linux QT Opencv NPU YoloV5摄像头实时检测系统...
陆依嫣
探索高效嵌入式视觉应用:RK3588/RK3568/RK3566LinuxQTOpencvNPUYoloV5摄像头实时检测系统rk_yolov5.zip项目地址:https://gitcode.com/open-source-toolkit/f6845项目介绍在智能安防、机器人视觉等需要高性能图像处理和实时监控的应用场景中,RockchipRK3588、RK3568和RK3566处理器凭借其强大的
- 目标检测入门教程:使用Python实现目标检测算法
晨曦之光,优美芝麻
目标检测python算法机器学习-深度学习
目标检测是计算机视觉领域中的重要任务,它旨在识别和定位图像或视频中的特定对象。本教程将介绍如何使用Python编程语言实现目标检测算法。我们将使用一种广泛应用的目标检测算法——基于深度学习的单阶段检测器YOLO(YouOnlyLookOnce)的最新版本YOLOv4作为示例。在开始之前,请确保您已经安装了Python和以下必要的库:NumPy、OpenCV和PyTorch。您可以使用pip命令来安
- yolov11网页版2.0(附源码+响应式)
Pan_peter
PythonYOLO网页端预测系统目标检测
演示视频:(功能演示)yolov11网页版2.0(附源码+响应式)_哔哩哔哩_bilibili项目链接:https://blog.csdn.net/Pan_peter/article/details/145130452,视频播放量0、弹幕量0、点赞数0、投硬币枚数0、收藏人数0、转发人数0,视频作者电石QwQ,作者简介不甘寂寞,相关视频:1.14全新!!【RVC变声器】无需声卡!0延迟!支持ios
- COCO8 数据集上训练 YOLO11n:从入门到跑路(100 轮训练实战)
星际编程喵
Python探索之旅目标跟踪人工智能计算机视觉机器学习
前言训练YOLO11n,听起来就像是给赛博世界的“战斗天使”装上双核发动机,而COCO8数据集,则是那个小小的试验场。今天,我们就要在这个数据集上训练YOLO11n模型100轮,见证它如何从一个懵懂的“AI萌新”成长为“目标检测大佬”。本篇文章将以专业又幽默的方式,带你深入了解训练流程,并提供完整代码示例,让你轻松掌握这项技术。简介YOLO(YouOnlyLookOnce)是目标检测领域的明星模型
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-head.py
红色的山茶花
YOLO笔记深度学习
head.pyultralytics\nn\modules\head.py目录head.py1.所需的库和模块2.classDetect(nn.Module):3.classSegment(Detect):4.classOBB(Detect):5.classPose(Detect):6.classClassify(nn.Module):7.classWorldDetect(Detect):8.cl
- Deepseek 对种猪市场会带来哪些影响?
百态老人
笔记大数据人工智能
DeepSeek对种猪市场的影响可以从以下几个方面进行分析:1.提高生产效率与降低成本根据,DeepSeek已经被用于养猪场中分析饲料配比,从而将猪的育肥周期从6个月缩短至5个月,并降低了15%的成本。这表明DeepSeek在优化养殖流程和提高生产效率方面具有显著作用,能够帮助养猪场降低运营成本,提升经济效益。2.推动智能化养殖技术的应用和提到,深度学习技术(如YOLOv5模型)已经被应用于生猪的
- YOLOv11小白的进击之路(六)创新YOLO的iou及损失函数时的源码分析
水静川流
YOLOYOLOpytorchyolo计算机视觉人工智能python
iou或者说是损失函数的修改经常作为论文的创新点之一,那这篇文章就总结分析了在对YOLO11进行损失函数创新时需要关注的源代码,新的一年祝大家论文与财都发发发!总的来看需要关注三个函数,分别位于YOLO庞大源码的不同文件,下面逐一分析:bbox_iou函数bbox_iou函数位于/ultralytics-main/ultralytics/utils/metrics.py,这个函数的目的是计算两个边
- SpringBoot中运行Yolov5程序
eqa11
springbootYOLO后端
文章目录SpringBoot中运行Yolov5程序一、引言二、环境搭建1、SpringBoot项目创建2、YOLOv5环境配置三、SpringBoot与YOLOv5集成1、创建Python服务2、SpringBoot调用Python服务四、使用示例1、创建控制器五、总结SpringBoot中运行Yolov5程序一、引言在人工智能领域,目标检测是一个热门且实用的技术。YOLOv5作为目标检测算法中的
- YOLO 目标检测编程详解
不知名靓仔
YOLO目标检测人工智能
引言目标检测是计算机视觉中的一个重要任务,它旨在识别图像中的对象并定位这些对象的位置。YOLO(YouOnlyLookOnce)是一种流行的目标检测算法,因其速度快且准确度高而广受好评。本文将深入探讨YOLO的原理及其实现方法,并提供一个使用Python和PyTorch的示例代码。项目源码见最下方1.YOLO算法简介YOLO算法的核心思想是将目标检测视为回归问题,而不是传统的分类加定位的两阶段方法
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round