- 盲超分的核心概念
小冷爱读书
数学建模盲超分超分重建
一、盲超分的本质与数学建模1.退化过程的数学表达低分辨率图像(LR)可看作高分辨率图像(HR)经过退化模型后的结果::观测到的低分辨率图像:待恢复的高分辨率图像:模糊核(BlurKernel)⊗:卷积操作↓:下采样(步长为):加性噪声(如高斯噪声、泊松噪声等)盲超分的核心问题:在未知、、的情况下,从估计。2.为什么传统超分方法会失效?传统方法(如SRCNN、EDSR)假设退化是固定的(如双三次下采
- 网络安全行业核心人才需求与职业发展路径
Gappsong874
安全网络安全程序人生职场和发展
在数字化浪潮席卷全球的今天,数据已成为驱动经济、重塑社会的核心资产。从智慧城市到工业互联网,从移动支付到远程医疗,数字技术深度融入人类生活的每个角落。然而,技术赋能的另一面是风险的指数级放大——网络攻击手段日益复杂,数据泄露事件频发,关键基础设施面临瘫痪威胁,甚至国家安全与公民隐私也暴露在未知风险之中。在此背景下,网络安全早已超越技术范畴,成为关乎国家战略、企业存续与个人权益的“数字生命线”。无论
- 多维度数据资产测绘技术在安全管控平台中的应用实践
KKKlucifer
安全数据库
一、数据资产治理困境:从“黑箱”到“可见性”的行业挑战在数字化转型加速的当下,企业数据资产呈现爆发式增长,而传统资产梳理手段因维度单一、时效性差,导致“资产黑箱”问题频发。某省级运营商曾在安全评估中发现,其核心系统中40%的数据资产处于未知状态,敏感数据分布模糊、接口调用链路缺失,直接引发376起未授权访问事件。这类问题的本质在于:资产维度碎片化:仅从网络端口或数据库层面单一测绘,无法关联业务系统
- 机器学习-K近邻算法
shy_snow
python机器学习机器学习近邻算法人工智能
k-近邻分类算法,即物以类聚的思想,通过已知分类中的点和未知分类的点距离最近的前k个点的分类来预测未知点的分类。kNN.pyfromnumpyimport*importoperatordefcreateDataSet():group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])labels=['A','A','B','B']returngroup,label
- LiDAR360 5.2.2:如梦令般的体验与感悟
VXHAruanjian888
航测软件信息可视化数据分析数据挖掘arcgis
初识LiDAR360忆昔年,初识LiDAR360,心中波澜起伏,恰如陆游笔下的江南春色,绚丽多姿。那时,我怀着满腔热情,踏入了这片未知的领域。LiDAR3605.2.2,如同一位睿智的导师,引领我在点云数据的海洋中遨游。功能强大,细节精致LiDAR3605.2.2的功能之强大,令人叹为观止。它不仅支持多种点云数据格式,还能进行高效的点云处理与分析。每当我使用它进行地形建模、植被分析或是城市三维建模
- 动态链接库:技术赋能,打通“最后一公里”的商业模式
超级晒盐人
经验分享学习方法人工智能教育电商程序员创富
序言-飞跃大山的故事阿登是一位热爱骑行的冒险者,他计划骑行穿越一片壮丽的山脉,去探索那片未知的风景。然而,当他查看路线图时,他发现其中有一座几乎不可能翻越的高峰。这座山峰不仅陡峭无比,还充满了危险的地形,即使是经验最丰富的骑行者也望而却步。阿登知道,仅凭自己的力量,很难完成这次骑行计划。于是,他开始寻找解决方案。在一次偶然的机会中,他听说了一位名叫阿飞的飞行员,他提供一种独特的服务——用直升机帮助
- 基线定位系统:长基线与超短基线的原理与应用
森焱森
人工智能
基线定位系统:长基线与超短基线的原理与应用在测量、导航、天文等领域,基线是两个已知位置之间的距离或方向,常用于三角测量、卫星定位等方法来确定其他位置的相对关系。本文将深入探讨长基线(LongBaseline,LBL)与超短基线(Ultra-ShortBaseLine,USBL)定位系统的原理、特点及应用。一、基线的定义与本质基线是参照点之间的已知距离或方向,作为基础数据,帮助确定其他未知位置。它通
- Java 反射机制详解:动态语言的关键特性
小二爱编程·
javapython开发语言
一、什么是Java的反射机制?Java反射(Reflection)是Java被视为动态语言的一个关键特征。它允许程序在运行时通过java.lang.reflect包中的API获取任意一个类的内部信息,包括:类名、包名父类、实现接口构造方法、成员变量、成员方法访问修饰符(public、private、protected)注解等元数据反射机制使得我们可以在运行时加载、探知、使用编译期间未知的类对象,从
- Java解古代案例鸡兔同笼问题(穷举法)
阿猫的故乡
java编程eclipsejava
问题:鸡兔同笼,上有35头,下有94只,求鸡兔各有多少只!问题分析:穷举算法的基本思想就是依赖于计算机的强大计算能力从所有可能情况中搜索正确的答案,穷举算法虽然效率不高,但是适合于一些没有明显规律可循的场合。使用穷举算法时,需要明确问题答案的范围,这样才可以在指定范围内搜索答案。指定范围后,就可以使用循环语句和条件判断语句逐步验证候选答案的正确性,从而搜索出正确答案。在以前设未知数x,求鸡兔问题,
- 传统预测学对于预测自然灾害与重大灾害可行性之辨
月_o9
python人机交互经验分享网络
传统预测学对于预测自然灾害与重大灾害可行性之辨人类自诞生起便始终面对自然狂暴力量的威胁。在科学尚未萌芽的漫长岁月里,我们的祖先仰观天文、俯察地理,试图从星象之变、地气之异乃至龟甲裂纹中寻找灾害降临的征兆——传统预测学由此萌芽。在中国,这体现为以天人感应为内核的星象占验与五行灾异之说;在西方,则表现为占星术对天体与人间祸福联系的执着解读。这些智慧结晶承载了先民对未知的敬畏与掌控命运的渴求。传统预测学
- 科学的第五范式:人工智能如何重塑发现之疆
田园Coder
人工智能科普人工智能科普
在人类探索未知的壮阔史诗中,科学方法的演进如同照亮迷雾的灯塔。从基于经验的第一范式(描述自然现象),到以理论推演为核心的第二范式(牛顿定律、麦克斯韦方程),再到以计算机模拟为标志的第三范式(气候模型、分子动力学),直至以大数据挖掘为驱动的第四范式(基因组学、高能物理),每一次范式跃迁都极大地拓展了认知的疆界。如今,我们正站在一个更恢弘转折的门槛上——第五范式:人工智能驱动的科学(AIforScie
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- C++为什么中不应该返回局部变量的地址
i love 3
C++返回引用c++return
最近在写代码的时候遇到返回局部变量的引用问题,认识不是很清晰,下面是转自http://blog.csdn.net/tujinqiuqq85948239/article/details/27236677博文的详细解释!在EffectiveC++中明确指出:不应该返回局部变量的引用,原因在于:局部变量会在函数返回后被销毁,因此被返回的引用就成为了”无所指”的引用,程序会进入未知状态。如果比较理解函数局
- 返回指向局部变量的指针或引用的带来的问题讨论
suyinfan
C/C++
返回局部变量没问题如果返回局部变量有问题,函数的意义还有吗?全局变量还用返回吗?返回指向局部变量的指针才有问题,函数退栈之后,局部变量消失,指针将指向未知区域,所以出现问题。返回局部变量的引用也是绝对不可以的。引用只是变量的一个别名,变量本体都不存在了,引用当然也没有任何意义。还有,如果是堆空间,可以返回,即在函数中用new申请的空间,是可以返回的。但是一般的情况下,好的风格是:尽量在同一个作用域
- Step-by-Step Diffusion&Flow Model Notes
克斯维尔的明天_
机器学习人工智能深度学习算法
Step-by-StepNotesFundamentalsofDiffusion生成模型的目标与扩散模型的基本思想生成模型的目标生成模型的目的是给定一组来自某个未知分布p∗(x)p^{*}(x)p∗(x)的独立同分布(i.i.d.)样本,构建一个采样器,能够近似地从相同的分布中生成新的样本。例如,假设我们有一组狗的图像训练集,这些图像来自某个潜在分布pdogp_{\text{dog}}pdog,我
- 量子算法:微算法科技用于定位未知哈希图的量子算法,网络安全中的哈希映射突破
MicroTech2025
量子计算哈希算法
近年来,量子计算的飞速发展使其成为各个领域的变革力量。特别是在网络安全领域,量子算法展示了加速并增强威胁检测(如恶意软件识别)方法的巨大潜力。微算法科技(NASDAQ:MLGO)用于定位未知哈希图的量子算法,是针对未知哈希图定位而设计的量子算法。这项技术可能会彻底改变在数据处理中利用哈希值的方式,特别是在恶意软件模式识别中。传统网络安全框架通常依赖哈希函数来生成不同数据结构的唯一标识符,或称之为“
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- JavaScript 条件逻辑优化全指南
一个水瓶座程序猿.
WebAPIsJavaScript系列文章JavaScriptjavascript开发语言ecmascript
#JavaScript条件逻辑优化全指南一、基础优化方案1.对象字面量映射//优化前functiongetStatusText(status){if(status==='success')return'成功';if(status==='fail')return'失败';if(status==='pending')return'进行中';return'未知状态';}//优化后conststatusM
- 自动化时候的坑:adb install时如何处理可恶的风险管控弹窗或者未知来源应用弹窗!
dialogtwb
ui自动化多线程adbpython软件测试
各位在自动化通过adbinstall或者pminstall的时候,有没有遇到过华为或者小米或者一加手机的各种安装弹窗呢,除了手动设置,该如何解决呢?目前自动化主流框架,pythonuiautomator2或者appuim等在执行测试的时候会自动给手机安装atx或者appuim引擎,但是如果不手动的点击允许,那么会导致测试失败,这种情况改如果处理呢?下面提供一种多线程的解决方案,亲测可行1个线程执行
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 【题解】洛谷P1001 A+B Problem
炯炯目光
c++
写在前面第一篇博客,献给2020年的残夏。静听8月的热情与安宁,在竞赛中的时光如白驹过隙。也不惧未知的风雨,努力向着既往的通途。ACMACMACM的目标,希望能实现吧。同时,推荐一下我的个人博客,欢迎访问。https://www.cnblogs.com/jjmg/下面是页面编辑的测试。题目地址https://www.luogu.com.cn/problem/P1001题目描述输入两个整数a,ba,
- Docker 镜像制作
Ris Hen
dockerdocker
目录镜像制作及原因快照方式制作镜像Dockerfile制作镜像为什么需要DockerfileDockerfile指令常见问题镜像制作及原因镜像制作是因为某种需求,官方的镜像无法满足需求,需要我们通过一定手段来自定义镜像来满足要求。制作镜像往往因为以下原因1.编写的代码如何打包到镜像中直接跟随镜像发布2.第三方制作的内容安全性未知,如含有安全漏洞3.特定的需求或者功能无法满足,如需要给数据库添加审计
- 随机化在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、随机化的核心目的1.1控制混杂偏倚1.1.1平衡预后因素确保已知/未知预后因素在组间分布均衡,避免基线不平衡影响结果。1.1.2避免选择偏倚防止研究者或患者主观选择分组,保障组间差异归因于干预。1.2保障统计推断有效性1.2.1满足独立性假设满足统计检验的独立性假设,使统计推断有效。1.2.2实现盲法基础为双盲实施提供先决条件,确保试验结果无偏。二、随机化类型与技术实现2.1简单随机化2.1.
- 动手学Python:从零开始构建一个“文字冒险游戏”
network爬虫
pythonpython开发语言
动手学Python:从零开始构建一个“文字冒险游戏”大家好,我是你的技术向导。今天,我们不聊高深的框架,也不谈复杂的算法,我们来做一点“复古”又极具趣味性的事情——用Python亲手打造一个属于自己的文字冒险游戏(TextAdventureGame)。你是否还记得那些在早期计算机上,通过一行行文字描述和简单指令来探索未知世界的日子?这种游戏的魅力在于它能激发我们最原始的想象力。而对于我们程序员来说
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- (线性代数最小二乘问题)Normal Equation(正规方程)
音程
数学线性代数机器学习人工智能
NormalEquation(正规方程)是线性代数中的一个重要概念,主要用于解决最小二乘问题(LeastSquaresProblem)。它通过直接求解一个线性方程组,找到线性回归模型的最优参数(如权重或系数)。以下是详细介绍:1.定义与数学表达式给定一个超定方程组(方程数量多于未知数):Ax=bA\mathbf{x}=\mathbf{b}Ax=b其中:A∈Rm×nA\in\mathbb{R}^{m
- 基于尤瓦尔·赫拉利AI观点的深度解析
勤奋的知更鸟
人工智能人工智能
引言人工智能(ArtificialIntelligence,AI)正以前所未有的速度从理论构想走向广泛的社会实践。从优化供应链到辅助医疗诊断,从金融风控到内容推荐,AI技术正成为重塑全球经济结构和社会形态的核心驱动力。然而,伴随其巨大潜能而来的,是同等量级、甚至更为复杂的潜在风险与未知挑战。在众多关于AI的讨论中,尤瓦尔·赫拉利凭借其宏大的历史视野和对人性的深刻洞察,提出了一系列极具警示意义的观点
- 确定方程的阶数并判断线性齐次、线性非齐次还是非线性
weixin_30777913
算法
题目考虑以下方程,确定它们的阶数;判断它们是线性齐次、线性非齐次还是非线性(uuu是未知函数);需要给出最精确(即尽可能具体但仍正确的)描述:ut+(1+x2)uxx=0u_t+(1+x^2)u_{xx}=0ut+(1+x2)uxx=0ut−(1+u2)uxx=0u_t-(1+u^2)u_{xx}=0ut−(1+u2)uxx=0ut+uxxx
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要