1、遗传算法
(1)遗传算法是一种基于自然选择原理和自然遗传机 制的搜索(寻优)算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目 标的优化。遗传算法的实质是通过群体搜索技术,根据适者生存的原则逐代进化,最终 得到最优解或准最优解。它必须做以下操作:初始群体的产生、求每一个体的适应度、 根据适者生存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染色 体的基因并随机变异某些染色体的基因后生成下一代群体,按此方法使群体逐代进化, 直到满足进化终止条件。其实现方法如下:
(2)例:已知100个目标的经纬度,我方有一个基地,经度和纬度为(70,40)。假设我方飞机的速度为 1000 公里/小时。 我方派一架飞机从基地出发,侦察完所有目标,再返回原基地。在每一目标的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。
tic
clc,clear
load sj.txt %加载100个目标的数据
x=sj(:,1:2:8); x=x(:);
y=sj(:,2:2:8); y=y(:);
sj=[x y]; d1=[70,40];
sj0=[d1;sj;d1]; sj=sj0*pi/180;
d=zeros(102); %距离矩阵d
for i=1:101
for j=i+1:102
temp=cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2));
d(i,j)=6370*acos(temp);
end
end
d=d+d';L=102;w=50;dai=100;
%通过改良圈算法选取优良父代A
for k=1:w
c=randperm(100);
c1=[1,c+1,102];
flag=1;
while flag>0
flag=0;
for m=1:L-3
for n=m+2:L-1
if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))
2、模拟退火算法
(1)模拟退火算法得益于材料的统计力学的研究成果。统计力学表明材料中粒子的不 同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和 重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(这个过 程被称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形成处于低能状态的晶体。
(2)例:已知100个目标的经纬度,我方有一个基地,经度和纬度为(70,40)。假设我方飞机的速度为 1000 公里/小时。 我方派一架飞机从基地出发,侦察完所有目标,再返回原基地。在每一目标的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。
tic
clc,clear
load sj.txt %加载100个目标的数据
x=sj(:,1:2:8);
x=x(:);
y=sj(:,2:2:8);
y=y(:);
sj=[x y];
d1=[70,40];
sj=[d1;sj;d1];
sj=sj*pi/180;
d=zeros(102); %距离矩阵d
for i=1:101
for j=i+1:102
temp=cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2));
d(i,j)=6370*acos(temp);
end
end
d=d+d';
S0=[];Sum=inf;
rand('state',sum(clock));
for j=1:1000
S=[1 1+randperm(100),102];
temp=0;
for i=1:101
temp=temp+d(S(i),S(i+1));
end
if temprand(1)
S0=[S0(1:c1-1),S0(c2:-1:c1),S0(c2+1:102)];
Sum=Sum+df;
end
T=T*at;
if T