- 音频 Alsa、Framework及Android
‘禹’你一起
后端
目录1Alsa、Framework及Android1.1ALSA架构简介图11.2ALSA架构简介图21.3ALSA架构简介图31.4ALSA架构简介图41.5ALSA架构简介图51.6ALSA架构简介图61.8音频代码1Alsa、Framework及Android目前,linux系统常用的音频驱动有两种形式:alsa和oss。Alsa:现在是linux下音频驱动的主要形式,与简单的oss兼容。o
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- linux系统命令——权限
why—空空
linux服务器运维
一、有哪些权限读(r)——对应数字4写(w)——对应数字2执行(x)——对应数字1二、权限及数字的对应4对应r--2对应-w-1对应--x5对应r-x6对应rw-7对应rwx三、文件的基本属性如图:①中如果是"一"表示文件类型为文件;如果是"d"表示文件类型是文件夹;如果是"l"表示文件类型为链接②表示文件属主(即谁创建的文件)的权限③中表示文件属主所属组(即文件属主所在的组)中的用户的权限④表示
- C/C++每日一练:实现选择排序
風清掦
C/C++~每日一练c语言c++算法
选择排序选择排序是一种简单直观的排序算法,时间复杂度为,其中n是数组长度,不适合大数据集的排序,适合于元素较少且对性能要求不高的场景。选择排序的基本思想是:每次从未排序部分选择最小的元素,将其放到已排序部分的末尾。这样经过多轮操作后,整个数组会被逐步排好序。具体步骤如下:初始化:将第一个元素作为已排序区,剩余部分作为未排序区。遍历未排序区:从未排序区间找出最小的元素,记下其位置。交换位置:将找到的
- 【人工智能】【Python】在Scikit-Learn中使用决策树算法(ID3和CART)
SmallBambooCode
机器学习人工智能python算法scikit-learn决策树机器学习ai
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.treeimportDecisionTreeClassifier,plot_tree#加载数据集iris=load_iri
- DeepBranchTracer:一种使用多特征学习进行曲线结构重建的通用方法
数据集
2024-02-02,由刘超、赵婷、郑能干一起提出了一种名为DeepBranchTracer的新型方法,是一种高效、通用的曲线结构重建方法,适用于多种2D和3D图像数据集。通过结合图像特征和几何特征,显著提高了重建的准确性和连续性。一、研究背景曲线结构(curvilinearstructures)是图像中常见的几何元素,广泛应用于医学图像中的神经分支和血管,以及遥感图像中的道路等。从图像中重建这些
- Python 3.14版本的彩蛋
使用3.14版本的Python创建一个虚拟环境,会看到在虚拟环境的bin目录中,不仅有python3、python3.14等常规文件,竟然还存在一个特殊的文件thon。/tmp/venv/bin$lltotal72...-rwxr-xr-x1useruser290BMar510:57pip3.14*lrwxr-xr-x1useruser10BMar510:57python@->python.exe
- EXCEL 读写文件xlrd,xlwt, xlsxwriter
jiahuip
1.xlrd读EXCELimportxlrdxlsx=xlrd.open_workbook('d:/表格1.xlsx')table=xlsx.sheet_by_index(0)#通过sheet名查找:xlsx.sheet_by_name("sheet0")#通过索引查找:xlsx.sheet_by_index(3)print(table.cell_value(0,0))#table.cell_va
- P3865 【模板】ST 表 && RMQ 问题 题解
huangyuze114514
算法数据结构
思路求区间最大值,一道ST表模板题。没学过ST表的看这里。当查询区间最值时,若只用暴力,肯定会超时,所以我们可以建造一个ST表,ST表可以先求出一些小的区间的最值,然后以此类推求出更大区间的最值,这样在查询的时候时间就会大大减少。关于建表,我们举个例子,如果我们输入一个长度为888的数组,默认这一层为第000层,那么第一层的1到71到71到7个数,每个数是下面两个数的最值;第二层的1到51到51到
- JVM基础概念整理
喜欢薄荷味
Javanotes
JVMJVM简介虚拟机:通过软件模拟的具有完整硬件功能的、运行在一个完全隔离环境中的完整的计算机系统。JVM:通过软件模拟Java字节码的指令集,JVM中只保留了PC寄存器内存区域与内存溢出异常1.运行时数据区域线程私有区域程序计数器、Java虚拟机栈、本地方法栈线程私有:生命周期与具体线程相同,随着线程的创建而创建,随着线程销毁,对应空间回收线程共享区域java堆、方法区、运行时常量池1.1程序
- JVM常用概念之FPU溢出
剑海风云
JDK(JavaDevelopmentKit)jvmFPU溢出
问题当自己的代码根本没有浮点或矢量运算,JVM在x86生成的机器代码为什么会用到XMM寄存器?基础知识FPU和矢量单元在现代CPU中随处可见,在许多情况下,它们为FPU特定的操作提供了一组备用寄存器。例如,Intelx86_64中的SSE和AVX扩展具有一组额外的宽XMM、YMM和ZMM寄存器,可与更宽的指令结合使用。虽然非矢量指令集通常与矢量和非矢量寄存器不正交(例如,我们不能在x86_64上将
- C51芯片包下载安装
Book_熬夜!
环境配置有关51单片机
一、前言由于前段时间下载Keil5用于编写stm32单片机程序,最近需要编写C51单片机的程序,在创建新项目时发现没有51单片机的器件型号,花了一点时间解决这个问题,故在此分享。二、解决方法1、下载烧录软件stc-isp百度网盘链接提取码:spvx解压密码:51打开后选择使用的芯片->Keil仿真设计->添加型号和头文件到Keil中即可。2、常见报错在执行上述操作时,注意添加时要求Keil安装的一
- Spark任务读取hive表数据导入es
小小小小小小小小小小码农
hiveelasticsearchsparkjava
使用elasticsearch-hadoop将hive表数据导入es,超级简单1.引入pomorg.elasticsearchelasticsearch-hadoop9.0.0-SNAPSHOT2.创建sparkconf//spark参数设置SparkConfsparkConf=newSparkConf();//要写入的索引sparkConf.set("es.resource","");//es集
- 请编写一个Python程序,实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络多输入单输出回归预测功能。
2301_81121233
算法神经网络pythonmongodbstormzookeeperspark
实现一个基于鲸鱼优化算法(WOA)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)的多输入单输出回归预测功能是一个复杂的任务,涉及到多个步骤和组件。由于完整的实现会非常冗长,我将提供一个简化的框架和关键部分的代码示例,帮助你理解如何实现这个功能。请注意,这个示例不会包含所有细节,比如数据集的准备、鲸鱼优化算法的具体实现(WOA是一个元启发式算法,需要单独实现或引用现有库),以及CNN-Bi
- ST-Align:一个包含430万训练样本,涵盖了15种细粒度多模态数据集
数据集
2025-01-15,由北航大学、合肥工业大学、中科院信息工程研究所和美团等机构联合创建介绍了一种名为LLaVA-ST的多模态大型语言模型。该模型配备了一个名为ST-Align的数据集,专为细粒度时空多模态理解设计。一、研究背景近年来,多模态大型语言模型(MLLMs)在多模态理解方面取得了显著进展,能够基于图像或视频生成对话或描述。然而,对于需要基于语言输入处理视觉坐标的细粒度多模态理解任务,现有
- PlanLLM: 首个支持开放词汇与封闭集任务的跨模态视频程序规划框架
数据集
2025年1月7号,由杨德杰、赵子敬、刘洋联合提出PlanLLM,一种基于可微调大型语言模型(LLM)的跨模态联合学习框架,用于解决视频程序规划任务。通过引入LLM增强规划模块和互信息最大化模块,PlanLLM突破了现有方法依赖封闭集标签和固定语义描述的限制,实现了对新步骤和任务的泛化能力。该方法在COIN、CrossTask、NIV三个基准数据集上取得显著性能提升,展现了其在弱监督学习中的有效性
- 算法-找到字符串中所有字母异位词
程序员南飞
算法数据结构开发语言java
力扣题目:438.找到字符串中所有字母异位词-力扣(LeetCode)题目描述:给定两个字符串s和p,找到s中所有p的异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。示例1:输入:s="cbaebabacd",p="abc"输出:[0,6]解释:起始索引等于0的子串是"cba",它是"abc"的异位词。起始索引等于6的子串是"bac",它是"abc"的异位词。示例2:输入:s="aba
- s1K 数据集:是一个用于提升语言模型推理能力的高质量数据集。
数据集
2025-02-07,由斯坦福大学、华盛顿大学等研究机构创建了s1K数据集,该数据集包含1,000个精心挑选的问题,并配以推理轨迹和答案,为语言模型推理能力的提升提供了重要的数据基础。一、研究背景近年来,语言模型(LMs)在大规模预训练的基础上取得了显著进展,其性能提升主要依赖于训练时计算资源的增加。然而,随着模型规模的不断扩大,训练成本也急剧上升。为了在有限的资源下进一步提升模型性能,研究者们开
- 训练数据重复采样,让正负样本比例1:1
kimi-222
机器学习人工智能深度学习
详细解释resample函数:resample函数来自sklearn.utils,用于从数据集中重新抽样。replace=True表示允许重复抽样,即同一个样本可以被多次选中。n_samples指定抽样的数量。确保训练集数量相同:通过resample函数,你可以确保正训练集和负训练集的数量相同,即使其中一个集的数量小于另一个集的数量。如果n_train_num小于max_train_num,res
- Python学习第十九天
Leo来编程
Python学习学习python
Django-分页后端分页Django提供了Paginator类来实现后端分页。Paginator类可以将一个查询集(QuerySet)分成多个页面,每个页面包含指定数量的对象。fromdjango.shortcutsimportrender,redirect,get_object_or_404from.modelsimportUserfrom.formsimportUserFormfromdja
- Spring Boot 核心知识点精讲:助你快速上手与深度理解
无眠_
springboot运维后端
SpringBoot核心知识点精讲:助你快速上手与深度理解摘要:SpringBoot以其约定优于配置、快速开发、易部署等特性,成为Java微服务开发的首选框架。本文将深入浅出地介绍SpringBoot的核心知识点,包括自动配置、起步依赖、依赖注入、外部化配置等,帮助读者快速上手SpringBoot并深入理解其运行机制,为高效开发SpringBoot应用打下坚实基础。关键词:SpringBoot,自
- 当大模型训练遇上“双向飙车”:DeepSeek开源周 DualPipe解析指南
来自于狂人
人工智能gpu算力算法系统架构
前言在大模型训练中,传统流水线并行因单向数据流和通信延迟的限制,导致GPU利用率不足60%,成为算力瓶颈。DeepSeek团队提出的DualPipe双向流水线架构,通过双向计算流与计算-通信重叠的创新设计,将前向与反向传播拆解为“对称轨道”,使GPU可“边读边写、边算边传”,将流水线空闲时间压缩超50%。结合显存优化技术,其显存占用仅为传统方法的1/8,GPU利用率提升至92%,单epoch训练时
- 【动手学深度学习】#1PyTorch基础操作
-一杯为品-
机器学习深度学习人工智能
主要参考学习资料:《动手学深度学习》阿斯顿·张等著【动手学深度学习PyTorch版】哔哩哔哩@跟李牧学AI目录1.1数据操作1.1.1入门1.1.2运算符1.1.3广播机制1.1.4索引和切片1.1.5节省内存1.1.6转换为其他Python对象1.2数据预处理1.2.1读取数据集1.2.2处理缺失值1.2.3转换为张量格式1.3线性代数1.3.1标量1.3.2向量1.3.3矩阵1.3.4张量1.
- moonligh串流教程以及3大问题解决
kalada82
win10电脑常见问题解决方案职场和发展小程序
首先说明,ml和steamlink我不是高下评判,大家自己喜欢用那个就行。ml可以关笔记本屏幕用,不用打开steam手动,我喜欢,还能当远程桌面问题;1软件下载,网上找的,随便用就是了2软件使用,开启gefoce的sheld功能·,把软件串流进去3ml使用闪屏,应为串流打开的屏幕是集显,就会这样,就要屏幕独显直连。台式连接一个外接显示器就行,笔记本买个hdmi欺骗器就行4设置hdmi的分辨率,设置
- ES的预置分词器
阿湯哥
elasticsearch服务器linux
Elasticsearch(简称ES)提供了多种预置的分词器(Analyzer),用于对文本进行分词处理。分词器通常由字符过滤器(CharacterFilters)、分词器(Tokenizer)和词元过滤器(TokenFilters)组成。以下是一些常用的预置分词器及其示例:1.StandardAnalyzer(标准分词器)默认分词器,适用于大多数语言。处理步骤:使用标准分词器(StandardT
- hive-进阶版-1
数据牧马人
hivehadoop数据仓库
第6章hive内部表与外部表的区别Hive是一个基于Hadoop的数据仓库工具,用于对大规模数据集进行数据存储、查询和分析。Hive支持内部表(ManagedTable)和外部表(ExternalTable)两种表类型,它们在数据存储、管理方式和生命周期等方面存在显著区别。以下是内部表和外部表的主要区别:1.数据存储位置内部表:数据存储在Hive的默认存储目录下,通常位于HDFS(HadoopDi
- 【技术实测】单一世界承载数万单位无分片同步!全球低延迟互动DEMO开放测试
微网兔子
後端技術c++服务器unity后端分布式
核心突破分散式同步引擎`实现三大关键指标:✅无分片架构-全域实体即时同步✅毫秒级延迟-跨洲网路优化✅万级货运-秒登入不排队万人单一世界最新技术测试影片目前,我们已实现一定的技术突破,并希望收集开发者的回馈,以确定下一步的优化方向。为了验证这项技术,我们部署了一个测试环境,具体情况如下:3万名玩家的即时互动3D测试环境(512×512平方米)已部署12,000个模拟客户端,开放18,000个名额给开
- What Are Optimal Coding Functions for Time-of-Flight Imaging?文章解读,TOG2018
吃饭睡觉发paper
数学建模
总结:1.ToF成像基础飞行时间(Time-of-Flight,ToF)相机通过发射调制光信号(如近红外光)并测量反射信号的时延来计算目标物体的距离。其核心原理可分为两类:连续波调制(CW-ToF):发射连续的正弦波调制光,通过测量反射信号的相位偏移计算距离。脉冲调制(PulsedToF):发射短脉冲光,直接测量光脉冲的往返时间。**编码函数(CodingFunction)**在此过程中定义了调制
- 少样本数值型数据集 | 数据增强
蒜蓉趣多多
机器学习人工智能材料工程
对于小样本数字型数据集,数据增强的有效方法主要集中在创造新的样本、调整现有样本的特征、或者通过生成模型来模拟真实分布。下面是个人搜集到的方法及部分代码。希望对大家的科研/工作有所帮助!1.噪声注入(NoiseInjection)方法:在原始数据上添加少量的随机噪声,生成新的样本。噪声可以是高斯噪声、均匀分布噪声或其他分布的噪声。实现:对于每个特征,可以加上一个服从小均值和小方差的正态分布噪声,如X
- 02、数据结构与算法 - 基础:数组 - 吊打面试官
星星学霸
数据结构与算法-吊打面试官python开发语言java算法数据结构
更多系列教程,每天更新更多教程关注:xxxueba.com星星学霸本篇博客我们介绍数据结构的鼻祖------数组,可以说数组几乎能表示一切的数据结构,在每一门编程语言中,数组都是重要的数据结构,当然每种语言对数组的实现和处理也不相同,但是本质是都是用来存放数据的的结构,这里我们以Java语言为例,来详细介绍Java语言中数组的用法。Java中数组的介绍在Java中,数组是用来存放同一种数据类型的集
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_