积分对于理工科的人来说,可谓一种基本技能。
在物理学上,积分是求解函数面积、体积、质心、转动惯量等物理量的基本工具。
在数学上,积分概念的引入,催生了诸如微分方程、无穷级数、微分几何、复变函数等数学分支,丰富了数学的内涵,推动了数学的发展。
在实际应用中,定积分可以计算具体的值,具有实际价值。而不定积分则可以用来寻找原函数,为求解定积分提供了便利。两者在物理学、工程学、经济学等领域中都有着广泛的应用。
本文就来探讨一些计算不定积分的技巧。
这里先给出一些比较基础的积分公式。有了这些积分公式,这些公式是基础中的基础。文末有一张比较全的基本积分表。
∫ k d x = k x + C \int kdx=kx+C ∫kdx=kx+C
∫ x a d x = 1 a + 1 x a + 1 + C , a ≠ − 1 \int x^adx=\frac{1}{a+1}x^{a+1}+C ,a\ne-1 ∫xadx=a+11xa+1+C,a=−1
∫ 1 x d x = l n ∣ x ∣ + C \int \frac{1}{x}dx=ln|x|+C ∫x1dx=ln∣x∣+C
∫ e x d x = e x + C \int e^xdx=e^x+C ∫exdx=ex+C
∫ c o s x d x = s i n x + C \int cosxdx=sinx+C ∫cosxdx=sinx+C
∫ s i n x d x = − c o s x + C \int sinxdx=-cosx+C ∫sinxdx=−cosx+C
∫ s e c 2 x d x = t a n x + C ( s e c x = 1 c o s x ) \int sec^2xdx=tanx+C(secx=\frac{1}{cosx}) ∫sec2xdx=tanx+C(secx=cosx1)
∫ c s c 2 d x = − c o t x + C ( c s c x = 1 s i n x ) \int csc^2dx=-cotx+C(cscx=\frac{1}{sinx}) ∫csc2dx=−cotx+C(cscx=sinx1)
∫ f ′ ( x ) d x = ∫ d f ( x ) = f ( x ) + C \int f'(x)dx=\int df(x)=f(x)+C ∫f′(x)dx=∫df(x)=f(x)+C
想办法把要积分的项转化为某个函数的导数的形式,然后利用基本积分公式求解。
1. ∫ 1 ( x − 1 ) 2 d x \int \frac{1}{(x-1)^2}dx ∫(x−1)21dx
= ∫ ( x − 1 ) − 2 d ( x − 1 ) =\int (x-1)^{-2}d(x-1) =∫(x−1)−2d(x−1)
= − 1 x − 1 + C =-\frac{1}{x-1}+C =−x−11+C
2. ∫ x e x 2 d x \int xe^{x^2}dx ∫xex2dx
= 1 2 ∫ e x 2 d x 2 =\frac{1}{2}\int e^{x^2}dx^2 =21∫ex2dx2
= 1 2 e x 2 + C =\frac{1}{2}e^{x^2}+C =21ex2+C
3. ∫ 1 e x + 1 d x \int \frac{1}{e^x+1}dx ∫ex+11dx
= ∫ 1 − e x e x + 1 d x = ∫ d x − ∫ e x e x + 1 d x = x − ∫ 1 e x + 1 d ( e x + 1 ) = x − l n ( e x + 1 ) + C =\int 1-\frac{e^x}{e^x+1}dx=\int dx-\int \frac{e^x}{e^x+1}dx=x-\int \frac{1}{e^x+1}d(e^x+1)=x-ln(e^x+1)+C =∫1−ex+1exdx=∫dx−∫ex+1exdx=x−∫ex+11d(ex+1)=x−ln(ex+1)+C
4. ∫ t a n x d x \int tanxdx ∫tanxdx
= ∫ s i n x c o s x d x = ∫ 1 c o s x d ( − c o s x ) = − ∫ 1 c o s x d ( c o s x ) = − l n ∣ c o s x ∣ + C =\int \frac{sinx}{cosx}dx=\int \frac{1}{cosx}d(-cosx)=-\int \frac{1}{cosx}d(cosx)=-ln|cosx|+C =∫cosxsinxdx=∫cosx1d(−cosx)=−∫cosx1d(cosx)=−ln∣cosx∣+C
∫ u d v = u v − v d u \int udv=uv-vdu ∫udv=uv−vdu
按照“反对幂指三”的原则,选取顺序靠后的函数的 d x dx dx凑成 d v dv dv
“反对幂指三”即反三角函数、对数函数、幂函数、指数函数、三角函数。
( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′
∫ ( u v ) ′ d x = ∫ u ′ v d x + ∫ u v ′ d x \int (uv)'dx=\int u'vdx+\int uv'dx ∫(uv)′dx=∫u′vdx+∫uv′dx
∫ d ( u v ) = ∫ v d u + ∫ u d v \int d(uv)=\int vdu+\int udv ∫d(uv)=∫vdu+∫udv
u v = ∫ v d u + ∫ u d v uv=\int vdu+\int udv uv=∫vdu+∫udv
∫ u d v = u v − v d u \int udv=uv-vdu ∫udv=uv−vdu
1. ∫ l n x d x \int lnxdx ∫lnxdx
= x l n x − ∫ x d ( l n x ) = x l n x − ∫ x ∗ 1 x d x = x l n − x + C =xlnx-\int xd(lnx)=xlnx-\int x*\frac{1}{x}dx=xln-x+C =xlnx−∫xd(lnx)=xlnx−∫x∗x1dx=xln−x+C
2. ∫ x l n x d x \int xlnxdx ∫xlnxdx
= 1 2 ∫ l n x d x 2 = 1 2 x 2 l n x − 1 2 ∫ x 2 d ( l n x ) = 1 2 x 2 l n x − 1 2 ∫ x d x = 1 2 x 2 l n x − 1 4 x 2 + C =\frac{1}{2}\int lnxdx^2=\frac{1}{2}x^2lnx-\frac{1}{2}\int x^2d(lnx)=\frac{1} {2}x^2lnx-\frac{1}{2}\int xdx=\frac{1}{2}x^2lnx-\frac{1}{4}x^2+C =21∫lnxdx2=21x2lnx−21∫x2d(lnx)=21x2lnx−21∫xdx=21x2lnx−41x2+C
3. ∫ x e x d x \int xe^xdx ∫xexdx
= ∫ x d e x = x e x − ∫ e x d x = x e x − e x + C =\int xde^x=xe^x-\int e^xdx=xe^x-e^x+C =∫xdex=xex−∫exdx=xex−ex+C
4. ∫ e x s i n x d x \int e^xsinxdx ∫exsinxdx
= ∫ s i n x d e x = e x s i n x − ∫ e x d s i n x = e x s i n x − ∫ e x c o s x d x = e x s i n x − ∫ c o s x d e x = e x s i n x − e x c o s x + ∫ e x d c o s x = e x s i n x − e x c o s x − ∫ e x s i n x d x =\int sinxde^x=e^xsinx-\int e^xdsinx=e^xsinx-\int e^xcosxdx=e^xsinx-\int cosxde^x=e^xsinx-e^xcosx+\int e^xdcosx=e^xsinx-e^xcosx-\int e^xsinxdx =∫sinxdex=exsinx−∫exdsinx=exsinx−∫excosxdx=exsinx−∫cosxdex=exsinx−excosx+∫exdcosx=exsinx−excosx−∫exsinxdx
2 ∫ e x s i n x d x = e x s i n x − e x c o s x 2\int e^xsinxdx=e^xsinx-e^xcosx 2∫exsinxdx=exsinx−excosx
∫ e x s i n x d x = 1 2 e x ( s i n x − c o s x ) \int e^xsinxdx=\frac{1}{2}e^x(sinx-cosx) ∫exsinxdx=21ex(sinx−cosx)
∫ s i n x x d x \int \frac{sin\sqrt{x}}{\sqrt{x}}dx ∫xsinxdx
令 t = x t=\sqrt{x} t=x,那么 x = t 2 x=t^2 x=t2, d x = 2 t d t dx=2tdt dx=2tdt
原式 = ∫ s i n t t 2 t d t = 2 ∫ s i n t d t = − 2 c o s t + C = − 2 c o s x + C =\int \frac{sint}{t}2tdt=2\int sintdt=-2cost+C=-2cos\sqrt{x}+C =∫tsint2tdt=2∫sintdt=−2cost+C=−2cosx+C
三角函数换元主要利用下面两个公式进行换元:
s i n 2 x + c o s 2 x = 1 sin^2x+cos^2x=1 sin2x+cos2x=1
1 + t a n 2 x = s e c 2 x 1+tan^2x=sec^2x 1+tan2x=sec2x
1. ∫ 1 a 2 − x 2 d x \int \frac{1}{\sqrt{a^2-x^2}}dx ∫a2−x21dx
令 x = a s i n t x=asint x=asint,则 t = a r c s i n ( x a ) t=arcsin(\frac{x}{a}) t=arcsin(ax), d x = a c o s t d t dx=acostdt dx=acostdt
原式 = ∫ a c o s t a 2 − a 2 s i n 2 t d t = ∫ a c o s t a 2 c o s 2 t ∫ d t = t + C = a r c s i n ( x a ) + C =\int \frac{acost}{\sqrt{a^2-a^2sin^2t}}dt=\int \frac{acost}{\sqrt{a^2cos^2t}}\int dt=t+C=arcsin(\frac{x}{a})+C =∫a2−a2sin2tacostdt=∫a2cos2tacost∫dt=t+C=arcsin(ax)+C
注:此处默认 a > 0 a>0 a>0,且不妨令 − π 2 < t < π 2 -\frac{\pi}{2}
2. ∫ 1 a 2 + x 2 d x \int \frac{1}{a^2+x^2}dx ∫a2+x21dx
令 x = a t a n t x=atant x=atant,则 t = a r c t a n ( x a ) t=arctan(\frac{x}{a}) t=arctan(ax), d x = a s e c 2 t d t dx=asec^2tdt dx=asec2tdt
原式 = ∫ a s e c 2 t a 2 + a 2 t a n 2 t d t = 1 a ∫ d t = 1 a a r c t a n ( x a ) + C =\int \frac{asec^2t}{a^2+a^2tan^2t}dt=\frac{1}{a}\int dt=\frac{1}{a}arctan(\frac{x}{a})+C =∫a2+a2tan2tasec2tdt=a1∫dt=a1arctan(ax)+C
1. ∫ 1 x 2 + x + 1 d x \int \frac{1}{x^2+x+1}dx ∫x2+x+11dx
= ∫ 1 ( x + 1 2 ) 2 + 3 4 d x = 2 3 3 a r c t a n ( 2 3 3 ( x + 1 2 ) ) + C =\int \frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}}dx=\frac{2\sqrt{3}}{3}arctan(\frac{2\sqrt{3}}{3}(x+\frac{1}{2}))+C =∫(x+21)2+431dx=323arctan(323(x+21))+C
2. ∫ x + 1 x 2 + x + 1 d x \int \frac{x+1}{x^2+x+1}dx ∫x2+x+1x+1dx
= ∫ x + 1 2 ( x + 1 2 ) 2 + 3 4 d x + ∫ 1 2 ( x + 1 2 ) 2 + 3 4 d x =\int \frac{x+\frac{1}{2}}{(x+\frac{1}{2})^2+\frac{3}{4}}dx+\int \frac{\frac{1}{2}}{(x+\frac{1}{2})^2+\frac{3}{4}}dx =∫(x+21)2+43x+21dx+∫(x+21)2+4321dx
= 1 2 ∫ 1 ( x + 1 2 ) 2 + 3 4 d [ ( x + 1 2 ) 2 + 3 4 ] + 1 2 ∫ 1 ( x + 1 2 ) 2 + 3 4 d x =\frac{1}{2}\int \frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}}d[(x+\frac{1}{2})^2+\frac{3}{4}]+\frac{1}{2}\int \frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}}dx =21∫(x+21)2+431d[(x+21)2+43]+21∫(x+21)2+431dx
= 1 2 l n [ ( x + 1 2 ) 2 + 3 4 ] + 3 3 a r c t a n ( 2 3 3 ( x + 1 2 ) ) + C =\frac{1}{2}ln[(x+\frac{1}{2})^2+\frac{3}{4}]+\frac{\sqrt{3}}{3}arctan(\frac{2\sqrt{3}}{3}(x+\frac{1}{2}))+C =21ln[(x+21)2+43]+33arctan(323(x+21))+C
= 1 2 l n ( x 2 + x + 1 ) + 3 3 a r c t a n ( 2 3 3 ( x + 1 2 ) ) + C =\frac{1}{2}ln(x^2+x+1)+\frac{\sqrt{3}}{3}arctan(\frac{2\sqrt{3}}{3}(x+\frac{1}{2}))+C =21ln(x2+x+1)+33arctan(323(x+21))+C
形如 f ( x ) = a 0 x m + a 1 x m − 1 + ⋯ + a m − 1 x + a m x n + b 1 x n − 1 + ⋯ + b n − 1 x + b n f(x)=\frac{a_0x^m+a_1x^{m-1}+\cdots+a_{m-1}x+a_m}{x^n+b_1x^{n-1}+\cdots+b_{n-1}x+b_n} f(x)=xn+b1xn−1+⋯+bn−1x+bna0xm+a1xm−1+⋯+am−1x+am的函数被称为有理函数。
只考虑 m < n m
( x + A 1 ) p 1 ( x + A 2 ) p 2 ⋯ ( x + A M ) p M ( x 2 + B 1 x + C 1 ) q 1 ( x 2 + B 2 x + C 2 ) q 2 ⋯ ( x 2 + B N x + C N ) q N (x+A_1)^{p_1}(x+A_2)^{p_2}\cdots(x+A_M)^{p_M}(x^2+B_1x+C_1)^{q_1}(x^2+B_2x+C_2)^{q_2}\cdots(x^2+B_Nx+C_N)^{q_N} (x+A1)p1(x+A2)p2⋯(x+AM)pM(x2+B1x+C1)q1(x2+B2x+C2)q2⋯(x2+BNx+CN)qN
那么 f ( x ) f(x) f(x)就可以分解成若干项简单真分式的和
f ( x ) = r 11 x + A 1 + r 12 ( x + A 1 ) 2 + ⋯ + r 1 p 1 ( x + A 1 ) p 1 + r 21 x + A 2 + r 22 ( x + A 2 ) 2 + ⋯ + r 2 p 2 ( x + A 2 ) p 2 + ⋯ + r M 1 x + A M + r M 2 ( x + A M ) 2 + ⋯ + r M p M ( x + A M ) p M + c 11 x + d 11 x 2 + B 1 x + C 1 + c 12 x + d 12 ( x 2 + B 1 x + C 1 ) 2 + ⋯ + c 1 q 1 x + d 1 q 1 ( x 2 + B 1 x + C 1 ) q 1 + c 21 x + d 21 x 2 + B 2 x + C 2 + c 22 x + d 22 ( x 2 + B 2 x + C 2 ) 2 + ⋯ + c 2 q 2 x + d 2 q 2 ( x 2 + B 2 x + C 2 ) q 2 + ⋯ + c N 1 x + d N 1 x 2 + B N x + C N + c N 2 x + d N 2 ( x 2 + B N x + C N ) 2 + ⋯ + c N q N x + d N q N ( x 2 + B N x + C N ) q N \begin{aligned} f(x)=&\frac{r_{11}}{x+A_1}+\frac{r_{12}}{(x+A_1)^2}+\cdots+\frac{r_{1p_1}}{(x+A_1)^{p_1}}+\\ &\frac{r_{21}}{x+A_2}+\frac{r_{22}}{(x+A_2)^2}+\cdots+\frac{r_{2p_2}}{(x+A_2)^{p_2}}+\cdots+\\ &\frac{r_{M1}}{x+A_M}+\frac{r_{M2}}{(x+A_M)^2}+\cdots+\frac{r_{Mp_M}}{(x+A_M)^{p_M}}+\\ &\frac{c_{11}x+d_{11}}{x^2+B_1x+C_1}+\frac{c_{12}x+d_{12}}{(x^2+B_1x+C_1)^2}+\cdots+\frac{c_{1q_1}x+d_{1q_1}}{(x^2+B_1x+C_1)^{q_1}}+\\ &\frac{c_{21}x+d_{21}}{x^2+B_2x+C_2}+\frac{c_{22}x+d_{22}}{(x^2+B_2x+C_2)^2}+\cdots+\frac{c_{2q_2}x+d_{2q_2}}{(x^2+B_2x+C_2)^{q_2}}+\cdots+\\ &\frac{c_{N1}x+d_{N1}}{x^2+B_Nx+C_N}+\frac{c_{N2}x+d_{N2}}{(x^2+B_Nx+C_N)^2}+\cdots+\frac{c_{Nq_N}x+d_{Nq_N}}{(x^2+B_Nx+C_N)^{q_N}} \end{aligned} f(x)=x+A1r11+(x+A1)2r12+⋯+(x+A1)p1r1p1+x+A2r21+(x+A2)2r22+⋯+(x+A2)p2r2p2+⋯+x+AMrM1+(x+AM)2rM2+⋯+(x+AM)pMrMpM+x2+B1x+C1c11x+d11+(x2+B1x+C1)2c12x+d12+⋯+(x2+B1x+C1)q1c1q1x+d1q1+x2+B2x+C2c21x+d21+(x2+B2x+C2)2c22x+d22+⋯+(x2+B2x+C2)q2c2q2x+d2q2+⋯+x2+BNx+CNcN1x+dN1+(x2+BNx+CN)2cN2x+dN2+⋯+(x2+BNx+CN)qNcNqNx+dNqN
分解成简单真分式之后,积分就都比较好求了。
1. ∫ 1 ( x − 1 ) ( x − 2 ) d x \int \frac{1}{(x-1)(x-2)}dx ∫(x−1)(x−2)1dx
根据公式,设 1 ( x − 1 ) ( x − 2 ) = a x − 1 + b x − 2 \frac{1}{(x-1)(x-2)}=\frac{a}{x-1}+\frac{b}{x-2} (x−1)(x−2)1=x−1a+x−2b
两边同乘 ( x − 1 ) ( x − 2 ) (x-1)(x-2) (x−1)(x−2),得到 1 = a ( x − 2 ) + b ( x − 1 ) = ( a + b ) x − 2 a − b 1=a(x-2)+b(x-1)=(a+b)x-2a-b 1=a(x−2)+b(x−1)=(a+b)x−2a−b
于是有 { a + b = 0 − 2 a − b = 1 \begin{cases} a+b=0\\ -2a-b=1 \end{cases} {a+b=0−2a−b=1
解得
{ a = − 1 b = 1 \begin{cases} a=-1\\ b=1 \end{cases} {a=−1b=1
于是,原式 = − ∫ 1 x − 1 d x + ∫ 1 x − 2 d x = − l n ∣ x − 1 ∣ + l n ∣ x − 2 ∣ + C = l n ∣ x − 2 x − 1 ∣ + C =-\int \frac{1}{x-1}dx+\int \frac{1}{x-2}dx=-ln|x-1|+ln|x-2|+C=ln|\frac{x-2}{x-1}|+C =−∫x−11dx+∫x−21dx=−ln∣x−1∣+ln∣x−2∣+C=ln∣x−1x−2∣+C
2. ∫ x 2 + x + 7 ( x − 1 ) 2 ( x 2 + x + 1 ) d x \int \frac{x^2+x+7}{(x-1)^2(x^2+x+1)}dx ∫(x−1)2(x2+x+1)x2+x+7dx
根据公式,设 x 2 + x + 7 ( x − 1 ) 2 ( x 2 + x + 1 ) = a x − 1 + b ( x − 1 ) 2 + c x + d x 2 + x + 1 \frac{x^2+x+7}{(x-1)^2(x^2+x+1)}=\frac{a}{x-1}+\frac{b}{(x-1)^2}+\frac{cx+d}{x^2+x+1} (x−1)2(x2+x+1)x2+x+7=x−1a+(x−1)2b+x2+x+1cx+d
经计算,得出
{ a = − 2 b = 3 c = 2 d = 2 \begin{cases} a=-2\\ b=3\\ c=2\\ d=2 \end{cases} ⎩ ⎨ ⎧a=−2b=3c=2d=2
于是,原式 = − 2 ∫ 1 x − 1 d x + 3 ∫ 1 ( x − 1 ) 2 d x + 2 ∫ x + 1 x 2 + x + 1 d x =-2\int \frac{1}{x-1}dx+3\int \frac{1}{(x-1)^2}dx+2\int \frac{x+1}{x^2+x+1}dx =−2∫x−11dx+3∫(x−1)21dx+2∫x2+x+1x+1dx
= − 2 l n ∣ x − 1 ∣ − 3 x − 1 + l n ( x 2 + x + 1 ) + 2 3 3 a r c t a n ( 2 3 3 ( x + 1 2 ) ) + C =-2ln|x-1|-\frac{3}{x-1}+ln(x^2+x+1)+\frac{2\sqrt{3}}{3}arctan(\frac{2\sqrt{3}}{3}(x+\frac{1}{2}))+C =−2ln∣x−1∣−x−13+ln(x2+x+1)+323arctan(323(x+21))+C
最后,给大家送上一张基本积分表。有了这张积分表,本来一些很繁琐的运算就可以变成直接套公式了。
1. ∫ k d x = k x + C \int kdx=kx+C ∫kdx=kx+C( k k k是常数)
2. ∫ x a d x = 1 a + 1 x a + 1 + C , a ≠ − 1 \int x^adx=\frac{1}{a+1}x^{a+1}+C ,a\ne-1 ∫xadx=a+11xa+1+C,a=−1
3. ∫ 1 x d x = l n ∣ x ∣ + C \int \frac{1}{x}dx=ln|x|+C ∫x1dx=ln∣x∣+C
4. ∫ 1 1 + x 2 d x = a r c t a n x + C \int \frac{1}{1+x^2}dx=arctanx+C ∫1+x21dx=arctanx+C
5. ∫ 1 1 − x 2 d x = a r c s i n x + C \int \frac{1}{\sqrt{1-x^2}}dx=arcsinx+C ∫1−x21dx=arcsinx+C
6. ∫ c o s x d x = s i n x + C \int cosxdx=sinx+C ∫cosxdx=sinx+C
7. ∫ s i n x d x = − c o s x + C \int sinxdx=-cosx+C ∫sinxdx=−cosx+C
8. ∫ s e c 2 x d x = t a n x + C ( s e c x = 1 c o s x ) \int sec^2xdx=tanx+C(secx=\frac{1}{cosx}) ∫sec2xdx=tanx+C(secx=cosx1)
9. ∫ c s c 2 d x = − c o t x + C ( c s c x = 1 s i n x ) \int csc^2dx=-cotx+C(cscx=\frac{1}{sinx}) ∫csc2dx=−cotx+C(cscx=sinx1)
10. ∫ s e c x t a n x d x = s e c x + C \int secxtanxdx=secx+C ∫secxtanxdx=secx+C
11. ∫ c s c x c o t x d x = − c s c x + C \int cscxcotxdx=-cscx+C ∫cscxcotxdx=−cscx+C
12. ∫ e x d x = e x + C \int e^xdx=e^x+C ∫exdx=ex+C
13. ∫ a x d x = a x l n a + C \int a^xdx=\frac{a^x}{lna}+C ∫axdx=lnaax+C, a > 0 a>0 a>0且 a ≠ 1 a\ne1 a=1
14. ∫ s h x d x = c h x + C \int shxdx=chx+C ∫shxdx=chx+C
15. ∫ c h x d x = s h x + C \int chxdx=shx+C ∫chxdx=shx+C
16. 1 a 2 + x 2 d x = a r c t a n x a + C \frac{1}{a^2+x^2}dx=arctan\frac{x}{a}+C a2+x21dx=arctanax+C
17. ∫ 1 x 2 − a 2 d x = 1 2 a l n ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2}dx=\frac{1}{2a}ln|\frac{x-a}{x+a}|+C ∫x2−a21dx=2a1ln∣x+ax−a∣+C
18. ∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int \frac{1}{\sqrt{a^2-x^2}}dx=arcsin\frac{x}{a}+C ∫a2−x21dx=arcsinax+C
19. ∫ 1 a 2 + x 2 d x = l n ( x + a 2 + x 2 ) + C \int \frac{1}{\sqrt{a^2+x^2}}dx=ln(x+\sqrt{a^2+x^2})+C ∫a2+x21dx=ln(x+a2+x2)+C
20. ∫ 1 x 2 − a 2 d x = l n ( x + x 2 − a 2 ) + C \int \frac{1}{\sqrt{x^2-a^2}}dx=ln(x+\sqrt{x^2-a^2})+C ∫x2−a21dx=ln(x+x2−a2)+C
21. ∫ t a n x d x = − l n ∣ c o s x ∣ + C \int tanxdx=-ln|cosx|+C ∫tanxdx=−ln∣cosx∣+C
22. ∫ c o t x d x = l n ∣ s i n x ∣ + C \int cotxdx=ln|sinx|+C ∫cotxdx=ln∣sinx∣+C
23. ∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C \int secxdx=ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
24. ∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int cscxdx=ln|cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
本文总结了几种比较常见的不定积分技巧和一些经典积分例题。暂时没有涉及定积分以及二重积分的内容(主要是因为不定积分比较简单)。