#ifndef __SPI_H__
#define __SPI_H__
#include "stm32f10x.h"
void SPI2_Init(void) ;//SPI2初始化 主模式
u8 SPI2_ReadWriteByte(u8 dat);
void SPI2_SetSpeed(u8 SPI_BaudRatePrescaler);
#endif
#include "SPI.h"
#include "stm32f10x.h"
void SPI2_Init(void)//SPI2初始化 主模式
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
/* Enable SPI2 and GPIOB clocks */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2,ENABLE);
/* Configure SPI2 pins: SCK, MISO and MOSI (NSS由软件配置,无需引脚)*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;//SCK MOSI
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽输出 前面有讲到
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB,GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15);//起始拉高(CPOL为1)
/* SPI2 configuration */
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //SPI2设置为两线全双工
SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //设置SPI2为主模式
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; //SPI发送接收8位帧结构
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; //CPOL极性位:串行时钟在不操作(空闲)时,时钟为高电平
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; //CPHA位:第二个时钟沿开始采样数据(此处为上升沿采集数据)
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS片选信号由软件模式(使用SSI位)管理,无需实际引脚接线节省一个引脚
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8; //定义波特率预分频的值:波特率预分频值为8,分频后为9MHZ
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //数据传输从MSB位开始 即高位先行
SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC校验位值计算的多项式(一般选这个就好了)
SPI_Init(SPI2, &SPI_InitStructure);
/* Enable SPI2 */
SPI_Cmd(SPI2, ENABLE); //使能SPI1外设
}
//SPIx 读写一个字节(全双工同时进行)
//返回值:读取到的字节
//#define SPI_RW SPI1_ReadWriteByte //代替函数名,以便适用于后面函数
u8 SPI2_ReadWriteByte(u8 dat)
{
u8 t; //获取标志位状态 等待发送位为空 才发送数据
while( SPI_I2S_GetFlagStatus( SPI2, SPI_I2S_FLAG_TXE) == RESET )
{
t ++;
if(t >= 200)
{
return 0;
}
}
SPI_I2S_SendData(SPI2,dat);
//接收位为空的话 等待接收
while( SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET )
{
t ++;
if(t >= 200)
{
return 0;
}
}
return SPI_I2S_ReceiveData(SPI2);
}
//设置SPI2速度(几分频) 前面结构体不是已经配置了吗?
void SPI2_SetSpeed(u8 SPI_BaudRatePrescaler)
{
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));
SPI2->CR1 &=0XFFC7 ; //寄存器CR1[3:5]位清0 (也叫波特率控制位BR)
SPI2->CR1 |= SPI_BaudRatePrescaler ; //设置SPI2速度
SPI_Cmd(SPI2,ENABLE);
}
#ifndef _nrf24l01_H
#define _nrf24l01_H
#include "SPI.h"
#include "stm32f10x.h"
//24L01操作线 一共8根线,其中两根电源线 以下为其余六根线做如下封装
#define NRF24L01_Port GPIOB
#define NRF24L01_CE GPIO_Pin_8 //24L01片选信号
#define NRF24L01_CSN GPIO_Pin_9 //SPI片选信号
#define NRF24L01_IRQ GPIO_Pin_6 //IRQ主机数据输入
//默认三根线跟SPI硬件有关
#define NRF24L01_CSN_L GPIO_ResetBits(NRF24L01_Port,NRF24L01_CSN)
#define NRF24L01_CSN_H GPIO_SetBits(NRF24L01_Port,NRF24L01_CSN)
#define NRF24L01_CE_L GPIO_ResetBits(NRF24L01_Port,NRF24L01_CE)
#define NRF24L01_CE_H GPIO_SetBits(NRF24L01_Port,NRF24L01_CE)
#define NRF24L01_IRQ_L GPIO_ResetBits(NRF24L01_Port,NRF24L01_IRQ)
#define NRF24L01_IRQ_H GPIO_SetBits(NRF24L01_Port,NRF24L01_IRQ)
//24L01发送接收数据宽度定义
#define TX_ADR_WIDTH 5 //5字节的地址宽度
#define RX_ADR_WIDTH 5 //5字节的地址宽度
#define TX_PLOAD_WIDTH 32 //32字节的用户数据宽度
#define RX_PLOAD_WIDTH 32 //32字节的用户数据宽度
//NRF24L01寄存器操作命令
#define NRF_READ_REG 0x00 //读配置寄存器,低5位为寄存器地址
#define NRF_WRITE_REG 0x20 //写配置寄存器,低5位为寄存器地址
#define RD_RX_PLOAD 0x61 //读RX有效数据,1~32字节
#define WR_TX_PLOAD 0xA0 //写TX有效数据,1~32字节
#define FLUSH_TX 0xE1 //清除TX FIFO寄存器.发射模式下用
#define FLUSH_RX 0xE2 //清除RX FIFO寄存器.接收模式下用
#define REUSE_TX_PL 0xE3 //重新使用上一包数据,CE为高,数据包被不断发送.
#define NOP 0xFF //空操作,可以用来读状态寄存器
//SPI(NRF24L01)寄存器地址
#define CONFIG 0x00 //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能;
//bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能
#define EN_AA 0x01 //使能自动应答功能 bit0~5,对应通道0~5
#define EN_RXADDR 0x02 //接收地址允许,bit0~5,对应通道0~5
#define SETUP_AW 0x03 //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节;
#define SETUP_RETR 0x04 //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us
#define RF_CH 0x05 //RF通道,bit6:0,工作通道频率;
#define RF_SETUP 0x06 //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益
#define STATUS 0x07 //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发
//bit5:数据发送完成中断;bit6:接收数据中断;
#define MAX_TX 0x10 //达到最大发送次数中断
#define TX_OK 0x20 //TX发送完成中断
#define RX_OK 0x40 //接收到数据中断
#define OBSERVE_TX 0x08 //发送检测寄存器,bit7:4,数据包丢失计数器;bit3:0,重发计数器
#define CD 0x09 //载波检测寄存器,bit0,载波检测;
#define RX_ADDR_P0 0x0A //数据通道0接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P1 0x0B //数据通道1接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P2 0x0C //数据通道2接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P3 0x0D //数据通道3接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P4 0x0E //数据通道4接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P5 0x0F //数据通道5接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define TX_ADDR 0x10 //发送地址(低字节在前),ShockBurstTM模式下,RX_ADDR_P0与此地址相等
#define RX_PW_P0 0x11 //接收数据通道0有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P1 0x12 //接收数据通道1有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P2 0x13 //接收数据通道2有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P3 0x14 //接收数据通道3有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P4 0x15 //接收数据通道4有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P5 0x16 //接收数据通道5有效数据宽度(1~32字节),设置为0则非法
#define NRF_FIFO_STATUS 0x17 //FIFO状态寄存器;bit0,RX FIFO寄存器空标志;bit1,RX FIFO满标志;bit2,3,保留
//bit4,TX FIFO空标志;bit5,TX FIFO满标志;bit6,1,循环发送上一数据包.0,不循环;
//
void NRF24L01_Init(void); //初始化
void NRF24L01_RX_Mode(void); //配置为接收模式
void NRF24L01_TX_Mode(void); //配置为发送模式
u8 NRF24L01_Write_Buf(u8 reg, u8 *pBuf, u8 u8s);//写数据区
u8 NRF24L01_Read_Buf(u8 reg, u8 *pBuf, u8 u8s); //读数据区
u8 NRF24L01_Read_Reg(u8 reg); //读寄存器
u8 NRF24L01_Write_Reg(u8 reg, u8 value); //写寄存器
u8 NRF24L01_Check(void); //检查24L01是否存在
u8 NRF24L01_TxPacket(u8 *txbuf); //发送一个包的数据
u8 NRF24L01_RxPacket(u8 *rxbuf); //接收一个包的数据
#endif
#include "NRF24L01.h"
#include "stm32f10x.h"
u8 tx_buf[33]="哞哞 ";
u8 rx_buf[33]={0};
const u8 TX_ADDRESS[TX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01}; //发送地址
const u8 RX_ADDRESS[RX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01};
//初始化24L01的IO口
void NRF24L01_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
//使能PB,F,D端口时钟 //PF8-CE PF9-CSN PD3-IRQ
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; //PG13上拉 防止EN25X的干扰
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOG, &GPIO_InitStructure); //初始化指定IO
GPIO_SetBits(GPIOG,GPIO_Pin_13);//上拉
GPIO_InitStructure.GPIO_Pin = NRF24L01_CSN|NRF24L01_CE; //PF8 9 推挽
GPIO_Init(NRF24L01_Port, &GPIO_InitStructure);//初始化指定IO
GPIO_ResetBits(NRF24L01_Port,NRF24L01_CSN|NRF24L01_CE);//PF6,7,8下拉
GPIO_InitStructure.GPIO_Pin = NRF24L01_IRQ;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PD3 输入
GPIO_Init(NRF24L01_Port, &GPIO_InitStructure);
GPIO_ResetBits(NRF24L01_Port,NRF24L01_IRQ);//PD3下拉
SPI2_Init(); //初始化SPI
SPI_Cmd(SPI2, DISABLE); // SPI外设不使能
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //SPI设置为双线双向全双工
SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //SPI主机
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; //发送接收8位帧结构
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; //时钟悬空低
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; //数据捕获于第1个时钟沿
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS信号由软件控制
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16; //定义波特率预分频的值:波特率预分频值为16
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //数据传输从MSB位开始
SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC值计算的多项式
SPI_Init(SPI2, &SPI_InitStructure); //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器
SPI_Cmd(SPI2, ENABLE); //使能SPI外设
NRF24L01_CE_L; //使能24L01
NRF24L01_CSN_H; //SPI片选取消
}
//检测24L01是否存在
//返回值:0,成功;1,失败
u8 NRF24L01_Check(void)
{
u8 buf[5]={0XA5,0XA5,0XA5,0XA5,0XA5};
u8 i;
SPI2_SetSpeed(SPI_BaudRatePrescaler_4); //spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)
NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,buf,5);//写入5个字节的地址.
NRF24L01_Read_Buf(TX_ADDR,buf,5); //读出写入的地址
for(i=0;i<5;i++)if(buf[i]!=0XA5)break;
if(i!=5)return 1;//检测24L01错误
return 0; //检测到24L01
}
//SPI写寄存器
//reg:指定寄存器地址
//value:写入的值
u8 NRF24L01_Write_Reg(u8 reg,u8 value)
{
u8 status;
NRF24L01_CSN_L; //使能SPI传输
status =SPI2_ReadWriteByte(reg);//发送寄存器号
SPI2_ReadWriteByte(value); //写入寄存器的值
NRF24L01_CSN_H; //禁止SPI传输
return(status); //返回状态值
}
//读取SPI寄存器值
//reg:要读的寄存器
u8 NRF24L01_Read_Reg(u8 reg)
{
u8 reg_val;
NRF24L01_CSN_L; //使能SPI传输
SPI2_ReadWriteByte(reg); //发送寄存器号
reg_val=SPI2_ReadWriteByte(0XFF);//读取寄存器内容
NRF24L01_CSN_H; //禁止SPI传输
return(reg_val); //返回状态值
}
//在指定位置读出指定长度的数据
//reg:寄存器(位置)
//*pBuf:数据指针
//len:数据长度
//返回值,此次读到的状态寄存器值
u8 NRF24L01_Read_Buf(u8 reg,u8 *pBuf,u8 len)
{
u8 status,u8_ctr;
NRF24L01_CSN_L; //使能SPI传输
status=SPI2_ReadWriteByte(reg);//发送寄存器值(位置),并读取状态值
for(u8_ctr=0;u8_ctr<len;u8_ctr++)
pBuf[u8_ctr]=SPI2_ReadWriteByte(0XFF);//读出数据
NRF24L01_CSN_H; //关闭SPI传输
return status; //返回读到的状态值
}
//在指定位置写指定长度的数据
//reg:寄存器(位置)
//*pBuf:数据指针
//len:数据长度
//返回值,此次读到的状态寄存器值
u8 NRF24L01_Write_Buf(u8 reg, u8 *pBuf, u8 len)
{
u8 status,u8_ctr;
NRF24L01_CSN_L; //使能SPI传输
status = SPI2_ReadWriteByte(reg);//发送寄存器值(位置),并读取状态值
for(u8_ctr=0; u8_ctr<len; u8_ctr++)
SPI2_ReadWriteByte(*pBuf++); //写入数据
NRF24L01_CSN_H; //关闭SPI传输
return status; //返回读到的状态值
}
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:发送完成状况
u8 NRF24L01_TxPacket(u8 *txbuf)
{
u8 sta;
SPI2_SetSpeed(SPI_BaudRatePrescaler_4);//spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)
NRF24L01_CE_L;
NRF24L01_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH);//写数据到TX BUF 32个字节
NRF24L01_CE_H;//启动发送
while(GPIO_ReadOutputDataBit(NRF24L01_Port,NRF24L01_IRQ)!=0);//等待发送完成
sta = NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&MAX_TX)//达到最大重发次数
{
NRF24L01_Write_Reg(FLUSH_TX,0xff);//清除TX FIFO寄存器
return MAX_TX;
}
if(sta&TX_OK)//发送完成
{
return TX_OK;
}
return 0xff;//其他原因发送失败
}
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:0,接收完成;其他,错误代码
u8 NRF24L01_RxPacket(u8 *rxbuf)
{
u8 sta;
SPI2_SetSpeed(SPI_BaudRatePrescaler_8); //spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&RX_OK)//接收到数据
{
NRF24L01_Read_Buf(RD_RX_PLOAD,rxbuf,RX_PLOAD_WIDTH);//读取数据
NRF24L01_Write_Reg(FLUSH_RX,0xff);//清除RX FIFO寄存器
return 0;
}
return 1;//没收到任何数据
}
//该函数初始化NRF24L01到RX模式
//设置RX地址,写RX数据宽度,选择RF频道,波特率和LNA HCURR
//当CE变高后,即进入RX模式,并可以接收数据了
void NRF24L01_RX_Mode(void)
{
NRF24L01_CE_L;
NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH);//写RX节点地址
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01);//使能通道0的接收地址
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40); //设置RF通信频率
NRF24L01_Write_Reg(NRF_WRITE_REG+RX_PW_P0,RX_PLOAD_WIDTH);//选择通道0的有效数据宽度
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f);//设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG, 0x0f);//配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式
NRF24L01_CE_H; //CE为高,进入接收模式
}
//该函数初始化NRF24L01到TX模式
//设置TX地址,写TX数据宽度,设置RX自动应答的地址,填充TX发送数据,选择RF频道,波特率和LNA HCURR
//PWR_UP,CRC使能
//当CE变高后,即进入RX模式,并可以接收数据了
//CE为高大于10us,则启动发送.
void NRF24L01_TX_Mode(void)
{
NRF24L01_CE_L;
NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,(u8*)TX_ADDRESS,TX_ADR_WIDTH);//写TX节点地址
NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH); //设置TX节点地址,主要为了使能ACK
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01); //使能通道0的接收地址
NRF24L01_Write_Reg(NRF_WRITE_REG+SETUP_RETR,0x1a);//设置自动重发间隔时间:500us + 86us;最大自动重发次数:10次
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40); //设置RF通道为40
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f); //设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG,0x0e); //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式,开启所有中断
NRF24L01_CE_H;//CE为高,10us后启动发送
}
#include "stm32f10x.h"
#include "main.h"
#include "delay.h"
#include "sys.h"
#include "USART.h"
#include "NRF24L01.h"
extern u8 tx_buf[33];//外部变量 头文件定义了
extern u8 rx_buf[33];
int main(void)
{
initSysTick();
USART_init();//串口初始化 串口重定向printf打印调试使用
NRF24L01_Init();
while(NRF24L01_Check()) //检测NRF24L01是否存在
{
printf("Error \n ");
}
printf("Success \n ");
NRF24L01_TX_Mode(); //发送模式
while(1)
{ //发送函数 无线射频发送出去
if(NRF24L01_TxPacket(tx_buf) == MAX_TX)
{
printf("发送成功 数据为 %s \n",tx_buf);
}
}
}
USART.h
#ifndef _printf_H
#define _printf_H
#include "stm32f10x.h"
#include "stdio.h"
int fputc(int ch,FILE *p);
void USART_init(void);
#endif
USART.c
#include "USART.h"
int fputc(int ch,FILE *p) //函数默认的,在使用printf函数时自动调用
{
USART_SendData(USART1,(u8)ch);
while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);
return ch;
}
/*******************************************************************************
* 函 数 名 : printf_init
* 函数功能 : IO端口及串口1,时钟初始化函数
* 输 入 : 无
* 输 出 : 无
*******************************************************************************/
void USART_init() //printf初始化
{
GPIO_InitTypeDef GPIO_InitStructure; //声明一个结构体变量,用来初始化GPIO
NVIC_InitTypeDef NVIC_InitStructure; //中断结构体定义
USART_InitTypeDef USART_InitStructure; //串口结构体定义
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1|RCC_APB2Periph_AFIO,ENABLE);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9;//TX
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;
GPIO_Init(GPIOA,&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10;//RX
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA,&GPIO_InitStructure);
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_InitStructure.USART_BaudRate=9600; //波特率设置为9600
USART_InitStructure.USART_WordLength=USART_WordLength_8b;
USART_InitStructure.USART_StopBits=USART_StopBits_1;
USART_InitStructure.USART_Parity=USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;
USART_Init(USART1,&USART_InitStructure);
USART_Cmd(USART1, ENABLE);
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//使能或者失能指定的USART中断 接收中断
USART_ClearFlag(USART1,USART_FLAG_TC);//清除USARTx的待处理标志位
}