LeetCode 560. Subarray Sum Equals K (Medium)

Description:

Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.

Example 1:
Input:nums = [1,1,1], k = 2
Output: 2
Note:

The length of the array is in range [1, 20,000].
The range of numbers in the array is [-1000, 1000] and the range of the integer k is [-1e7, 1e7].


Analysis:
  1. Brute force is always a correct method. However, we can also make a tweak. For example, we use s u m [ i , j ] sum[i, j] sum[i,j] to denote the sum of elements from a [ i ] a[i] a[i] to a [ j ] a[j] a[j] (inclusive), if we know the s u m [ 0 , i − 1 ] sum[0, i-1] sum[0,i1] and s u m [ 0 , j ] sum[0, j] sum[0,j] we can get s u m [ i , j ] sum[i, j] sum[i,j] by executing s u m [ 0 , j ] − s u m [ 0 , i − 1 ] sum[0,j] - sum[0,i-1] sum[0,j]sum[0,i1](Here we assume i − 1 < j i-1 < j i1<j).
  2. In this problem, we need to find the number of s u m [ i , j ] sum[i, j] sum[i,j] which equals to k k k. When we traverse the array, we can get s u m [ 0 , j ] sum[0, j] sum[0,j] trivially, so what we need to do is to find the number of s u m [ i − 1 ] sum[i-1] sum[i1] that satisfies s u m [ 0 , i − 1 ] = s u m [ 0 , j ] − k sum[0, i-1] = sum[0, j] - k sum[0,i1]=sum[0,j]k.
  3. What we need to be advised is that when s u m [ 0 , j ] sum[0, j] sum[0,j] is equal to k k k, i = 0 i = 0 i=0 and i − 1 i-1 i1 is equal to − 1 -1 1, which seems illegal. So under this special circumstance, we should consider s u m [ 0 , i − 1 ] sum[0, i-1] sum[0,i1] as 0 0 0.

Code:
class Solution {
    public int subarraySum(int[] nums, int k) {
        int rs = 0;
        Map<Integer, Integer> sumFreq = new HashMap<>(); // { sum[0, i-1]: frequency }
        sumFreq.put(0, 1);
        
        int curSum = 0; // sum[0, j] (inclusive)
        for(int j = 0; j < nums.length; j++) {
            curSum += nums[j]; 
            // Try finding sum[0, i-1] that satisfies sum[0, i-1] = sum[0, j] - k .
            if(sumFreq.containsKey(curSum - k)) { 
                rs += sumFreq.get(curSum - k);
            }
            sumFreq.put(curSum, sumFreq.getOrDefault(curSum, 0)+1); //sum[0, j] --> sum[0, i-1], map.get(sum[0, i-1])++;
        }
        return rs;
    }
}

你可能感兴趣的:(LeetCode,leetcode)