算法训练营第四十四天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ

目录

  • 动态规划:完全背包理论基础
  • Leetcode518.零钱兑换II
  • Leetcode377. 组合总和 Ⅳ

动态规划:完全背包理论基础

文章链接:代码随想录
题目链接:卡码网:52. 携带研究材料

思路:完全背包问题,物品可以无限取,即不用考虑是否重复添加,在一维(滚动)数组解法上,将背包遍历变为正序。

# include 
using namespace std;
 
void solve(int N, int V){
    vector<int> dp(V + 1);
    vector<int> weight(N), value(N);
    for (int i = 0; i < N; i++){
        cin >> weight[i] >> value[i];
    }
    for (int i = 0; i < N; i++){
        for (int j = weight[i]; j <= V; j++){
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[V] << endl;
}
 
int main(){
    int N ,V;
    cin >> N >> V;
    solve(N , V);
    return 0;
}

Leetcode518.零钱兑换II

文章链接:代码随想录
题目链接:518.零钱兑换II

思路:完全背包求组合问题,改一下状态转移方程即可。

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++){
            for (int j = coins[i]; j <= amount; j++){
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

Leetcode377. 组合总和 Ⅳ

文章链接:代码随想录
题目链接:377. 组合总和 Ⅳ

思路:完全背包求排列问题,先遍历背包,再遍历物品,注意用例超界。

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1);
        dp[0] = 1; 
       for (int j = 0; j <= target; j++){
            for (int i = 0; i < nums.size(); i++){
                if (j >= nums[i] && dp[j] < INT_MAX - dp[j - nums[i]]) dp[j] += dp[j - nums[i]];
            }
        }
        return dp[target];
    }
};

第四十四天打卡,加油!!!

你可能感兴趣的:(算法,动态规划)