文章链接:代码随想录
题目链接:卡码网:46. 携带研究材料
01背包问题
二维数组解法:
#include
using namespace std;
void slove(int M, int N){
vector<vector<int>> dp(M, vector<int> (N + 1));
vector<int> weight(M), value(M);
for (int i = 0; i < M; i++){
cin >> weight[i];
}
for (int i = 0; i < M; i++){
cin >> value[i];
}
for (int j = 0; j <= N; j++){
if (j >= weight[0]) dp[0][j] = value[0];
}
for (int i = 1; i < M; i++){
for (int j = 0; j <= N; j++){
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
cout << dp[M - 1][N] << endl;
}
int main(){
int M, N;
cin >> M >> N;
slove(M, N);
return 0;
}
思路:就是按代码随想录上的那张二维表来看,更新 j 重量下的背包能放0 - i 中多少最大价值的物品;然后一行一行的更新,更新到新物品时,要么就是在 j 重量下放不下,也就是
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
要么能放下就取 原来 或者 新更新物品后背包中的最大值,也就是
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其中,
dp[i - 1][j]
代表不放入 i 物品
dp[i - 1][j - weight[i]] + value[i]
代表在 j 重量下先空出weight[i]这么大的空间,然后再放如 i 物品,它可能是本来就有这么大空间,也可能是把其它一些物品拿出去后再放入的 i 物品。
一维(滚动数组)数组解法:
#include
using namespace std;
void slove(int M, int N){
vector<int> dp(N + 1, 0);
vector<int> weight(M), value(M);
for (int i = 0; i < M; i++){
cin >> weight[i];
}
for (int i = 0; i < M; i++){
cin >> value[i];
}
for (int i = 0; i < M; i++){
for (int j = N; j >= weight[i]; j--){
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[N] << endl;
}
int main(){
int M, N;
cin >> M >> N;
slove(M, N);
return 0;
}
一维数组相比二维数组解法就是将每次更新都放在一行上,而且省去了初始化,所以会节省很多空间,这点在后面 leetcode 上的那题会看到比较。另外要注意在遍历重量时是倒序遍历的:
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
正序遍历会引起重复,而二维数组不会重复是因为每行都用的是上一行的值来更新的。
第一天理解的时候迷迷糊糊,第二天没事时有想了一会突然茅塞顿开了哈哈哈。
文章链接:代码随想录
题目链接:416. 分割等和子集
思路:01背包应用问题,留足背包的容量,也就是最大总和的一半值加一,如果更新到最后在半值重量的背包中能正好装满,就说明数组可以对半分。
二维数组解法:
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;
for (int i : nums){
sum += i;
}
if (sum % 2 == 1) return false;
int target = sum / 2;
vector<vector<int>> dp(nums.size(), vector<int> (10001));
for (int j = 0; j < 10001; j++){
if (j >= nums[0]) dp[0][j] = nums[0];
}
for (int i = 1; i < nums.size(); i++){
for (int j = 0; j < 10001; j++){
if (j < nums[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
}
}
if (dp[nums.size() - 1][target] == target) return true;
return false;
}
};
一维(滚动)数组解法:
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;
for (int i : nums){
sum += i;
}
if (sum % 2 == 1) return false;
int target = sum / 2;
vector<vector<int>> dp(nums.size(), vector<int> (10001));
for (int j = 0; j < 10001; j++){
if (j >= nums[0]) dp[0][j] = nums[0];
}
for (int i = 1; i < nums.size(); i++){
for (int j = 0; j < 10001; j++){
if (j < nums[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
}
}
if (dp[nums.size() - 1][target] == target) return true;
return false;
}
};
这里可以看出两种解法的时间空间对比,显然二维解法有着更大的时间和空间复杂度。因此以后的应用问题尽可能一维(滚动)数组解法。
第四十二天补卡,这两天回学校吃组饭,又耽误了两天,后面那顿饭你不行不去吃了;大体知识能串联起来了,今天开始撸项目背八股,哪不会学哪了,单学效率太低了,争取能在春节后找到个实习,加油!!!