Asynchronous FIFO and synchronous FIFO-翻译自外网

Synchronous FIFO

先进先出 (FIFO) 是一种非常流行且有用的设计块,用于模块之间的同步和握手机制。

FIFO 的深度: FIFO 中的槽数或行数称为 FIFO 的深度。

FIFO 的宽度:每个槽或行中可以存储的位数称为 FIFO 的宽度。

在同步 FIFO 中,数据读取和写入操作使用相同的时钟频率。通常,它们与高时钟频率一起使用以支持高速系统。

Asynchronous FIFO and synchronous FIFO-翻译自外网_第1张图片

Signals:

wr_en: 写使能

wr_data: 写数据write data

full: FIFO is full 满

empty: FIFO is empty 空

rd_en: 读使能 read enable

rd_data: 读数据read data

w_ptr: 写指针write pointer

r_ptr: 读指针 read pointer

FIFO 可以根据 wr_en 信号在时钟的每个 posege 存储/写入 wr_data,直到满为止。每次将数据写入 FIFO 存储器时,写入指针都会递增。

根据rd_en信号,可以在时钟的每个周期从FIFO中取出或读取数据,直到为空为止。每次从 FIFO 存储器读取数据时,读指针都会递增。

method
empty condition

w_ptr == r_ptr 即写指针和读指针具有相同的值。

full condition

满的情况意味着 FIFO 中的每个槽都被占用,但是 w_ptr 和 r_ptr 将再次具有相同的值。因此,无法确定是满状态还是空状态。因此,故意将 FIFO 的最后一个槽保持为空,满条件可以写为 (w_ptr+1’b1) == r_ptr)

code
module synchronous_fifo #(parameter DEPTH=8, DATA_WIDTH=8) (
  input clk, rst_n,
  input w_en, r_en,
  input [DATA_WIDTH-1:0] data_in,
  output reg [DATA_WIDTH-1:0] data_out,
  output full, empty
);
  
  reg [$clog2(DEPTH)-1:0] w_ptr, r_ptr;
  reg [DATA_WIDTH-1:0] fifo[DEPTH];
  
  // Set Default values on reset.
  always@(posedge clk) begin
    if(!rst_n) begin
      w_ptr <= 0; r_ptr <= 0;
      data_out <= 0;
    end
  end
  
  // To write data to FIFO
  always@(posedge clk) begin
    if(w_en & !full)begin
      fifo[w_ptr] <= data_in;
      w_ptr <= w_ptr + 1;
    end
  end
  
  // To read data from FIFO
  always@(posedge clk) begin
    if(r_en & !empty) begin
      data_out <= fifo[r_ptr];
      r_ptr <= r_ptr + 1;
    end
  end
  
  assign full = ((w_ptr+1'b1) == r_ptr);
  assign empty = (w_ptr == r_ptr);
endmodule
testbench
module sync_fifo_TB;
  parameter DATA_WIDTH = 8;
  
  reg clk, rst_n;
  reg w_en, r_en;
  reg [DATA_WIDTH-1:0] data_in;
  wire [DATA_WIDTH-1:0] data_out;
  wire full, empty;
  
  // Queue to push data_in
  reg [DATA_WIDTH-1:0] wdata_q[$], wdata;

  synchronous_fifo s_fifo(clk, rst_n, w_en, r_en, data_in, data_out, full, empty);

  always #5ns clk = ~clk;
  
  initial begin
    clk = 1'b0; rst_n = 1'b0;
    w_en = 1'b0;
    data_in = 0;
    
    repeat(10) @(posedge clk);
    rst_n = 1'b1;

    repeat(2) begin
      for (int i=0; i<30; i++) begin
        @(posedge clk);
        w_en = (i%2 == 0)? 1'b1 : 1'b0;
        if (w_en & !full) begin
          data_in = $urandom;
          wdata_q.push_back(data_in);
        end
      end
      #50;
    end
  end

  initial begin
    clk = 1'b0; rst_n = 1'b0;
    r_en = 1'b0;

    repeat(20) @(posedge clk);
    rst_n = 1'b1;

    repeat(2) begin
      for (int i=0; i<30; i++) begin
        @(posedge clk);
        r_en = (i%2 == 0)? 1'b1 : 1'b0;
        if (r_en & !empty) begin
          #1;
          wdata = wdata_q.pop_front();
          if(data_out !== wdata) $error("Time = %0t: Comparison Failed: expected wr_data = %h, rd_data = %h", $time, wdata, data_out);
          else $display("Time = %0t: Comparison Passed: wr_data = %h and rd_data = %h",$time, wdata, data_out);
        end
      end
      #50;
    end

    $finish;
  end
  
  initial begin 
    $dumpfile("dump.vcd"); $dumpvars;
  end
endmodule

method2
Empty condition

count == 0 i.e. FIFO contains nothing.

Full condition

count == FIFO_DEPTH i.e. counter value has reached till the depth of FIFO

method3
Empty condition

w_ptr == r_ptr i.e. write and read pointers has the same value. MSB of w_ptr and r_ptr also has the same value.

Full condition

w_ptr == r_ptr i.e. write and read pointers has the same value, but the MSB of w_ptr and r_ptr differs.

Asynchronous FIFO

在异步 FIFO 中,数据读取和写入操作使用不同的时钟频率。由于写入和读取时钟不同步,因此称为异步 FIFO。通常,这些用于数据需要从一个时钟域传递到另一个时钟域的系统,这通常被称为“时钟域交叉”。因此,异步 FIFO 有助于同步工作在不同时钟上的两个系统之间的数据流。

Asynchronous FIFO and synchronous FIFO-翻译自外网_第2张图片

Gray code

Asynchronous FIFO and synchronous FIFO-翻译自外网_第3张图片

Asynchronous FIFO Block Diagram

Asynchronous FIFO and synchronous FIFO-翻译自外网_第4张图片

Signals:

wr_en: 写使能write enable

wr_data: 写数据write data

full: FIFO is full满

empty: FIFO is empty 空

rd_en: read enable 读使能

rd_data: read data 读数据

b_wptr: binary write pointer 二进制写指针

g_wptr: gray write pointer 格雷码写指针

b_wptr_next: binary write pointer next 指示用于二进制写入新数据的下一个可用地址。

g_wptr_next: gray write pointer next 指示用于格雷码写入新数据的下一个可用地址。

b_rptr: binary read pointer 二进制读指针

g_rptr: gray read pointer 格雷码读指针

b_rptr_next: binary read pointer next 指示用于二进制读新数据的下一个可用地址。

g_rptr_next: gray read pointer next 指示用于格雷码读入新数据的下一个可用地址。

b_rptr_sync: binary read pointer synchronized

b_wptr_sync: binary write pointer synchronized

同步必要性:

  • 异步 FIFO:它们具有独立的读写时钟,通常以不同的频率运行。
  • 时钟域交叉 (CDC):这些域之间的数据传输带来了同步挑战。
  • 亚稳态:跨时钟域的信号可能进入亚稳态(不确定值),可能导致数据损坏。
Asynchronous FIFO Operation

在同步 FIFO 的情况下,写入和读取指针在同一时钟上生成。然而,在异步 FIFO 的情况下,写指针与写时钟域对齐,而读指针与读时钟域对齐。因此,需要跨域来计算 FIFO 满和空的情况。这会导致实际设计中的亚稳态。为了解决这种亚稳态问题,可以使用2个触发器或3个触发器同步器来传递写入和读取指针。为了便于解释,我们将使用 2 个触发器同步器。请注意,单个“2 FF 同步器”只能解决一位的亚稳态问题。因此,根据写入和读取指针,需要多个 2FF 同步器。

Asynchronous FIFO and synchronous FIFO-翻译自外网_第5张图片

module synchronizer #(parameter WIDTH=3) (input clk, rst_n, [WIDTH:0] d_in, output reg [WIDTH:0] d_out);
  reg [WIDTH:0] q1;
  always@(posedge clk) begin
    if(!rst_n) begin
      q1 <= 0;
      d_out <= 0;
    end
    else begin
      q1 <= d_in;
      d_out <= q1;
    end
  end
endmodule
Usage of Binary to Gray code converter and vice-versa in Asynchronous FIFO

到目前为止,我们讨论了如何在各个时钟域中获取异步写入和读取指针。但是,我们不应该传递二进制格式的写入和读取指针值。由于亚稳态,整体写入或读取指针值可能不同。

示例:当写时钟域的二进制值 wr_ptr = 4’b1101 通过 2FF 同步器传输时,读时钟域的 wr_ptr 值可能会接收为 4’b1111 或任何其他不可接受的值。而格雷码则保证与之前的值相比只有一位变化。因此,写指针和读指针都需要首先转换为其相应域中的等效格雷码,然后将它们传递到相反的域。要检查另一个域中 FIFO 满和空的情况,我们有两种方法。

Way 1

将接收到的格雷码格式的指针转换为二进制格式,然后检查满和空的情况。

FIFO full condition
g2b_converter g2b_wr(g_rptr_sync, b_rptr_sync);
wrap_around = b_rptr_sync[PTR_WIDTH] ^ b_wptr[PTR_WIDTH];
wfull = wrap_around & (b_wptr[PTR_WIDTH-1:0] == b_rptr_sync[PTR_WIDTH-1:0]);
FIFO empty condition
g2b_converter g2b_rd(g_wptr_sync, b_wptr_sync);
rempty = (b_wptr_sync == b_rptr_next);
Way 2

借助接收到的格雷码写入和读取指针直接检查满和空状况。这是高效的,因为它不需要额外的硬件来将格雷码写入和读取指针转换为等效的二进制形式。

FIFO full condition
wfull = (g_wptr_next == {~g_rptr_sync[PTR_WIDTH:PTR_WIDTH-1], g_rptr_sync[PTR_WIDTH-2:0]});
FIFO empty condition
rempty = (g_wptr_sync == g_rptr_next);
Asynchronous FIFO Verilog Code

同步器 g_rptr_sync 的输出作为“写指针处理程序”模块的输入,用于生成 FIFO 满状态。如果二进制写指针 (b_wptr) 满足 (w_en & !full) 条件,则它会递增。该 b_wptr 值被馈送到 fifo_mem 模块以将数据写入 FIFO。

Write Pointer Handler
module wptr_handler #(parameter PTR_WIDTH=3) (
  input wclk, wrst_n, w_en,
  input [PTR_WIDTH:0] g_rptr_sync,
  output reg [PTR_WIDTH:0] b_wptr, g_wptr,
  output reg full
);

  reg [PTR_WIDTH:0] b_wptr_next;
  reg [PTR_WIDTH:0] g_wptr_next;
   
  reg wrap_around;
  wire wfull;
  
  assign b_wptr_next = b_wptr+(w_en & !full);
  assign g_wptr_next = (b_wptr_next >>1)^b_wptr_next;
  
  always@(posedge wclk or negedge wrst_n) begin
    if(!wrst_n) begin
      b_wptr <= 0; // set default value
      g_wptr <= 0;
    end
    else begin
      b_wptr <= b_wptr_next; // incr binary write pointer
      g_wptr <= g_wptr_next; // incr gray write pointer
    end
  end
  
  always@(posedge wclk or negedge wrst_n) begin
    if(!wrst_n) full <= 0;
    else        full <= wfull;
  end

  assign wfull = (g_wptr_next == {~g_rptr_sync[PTR_WIDTH:PTR_WIDTH-1], g_rptr_sync[PTR_WIDTH-2:0]});

endmodule
Read Pointer Handler

同步器 g_wptr_sync 的输出作为“读指针处理程序”模块的输入,以生成 FIFO 空条件。如果二进制读指针 (b_rptr) 满足 (r_en & !empty) 条件,则它会递增。该 b_rptr 值被馈送到 fifo_mem 模块以从 FIFO 读取数据。

module rptr_handler #(parameter PTR_WIDTH=3) (
  input rclk, rrst_n, r_en,
  input [PTR_WIDTH:0] g_wptr_sync,
  output reg [PTR_WIDTH:0] b_rptr, g_rptr,
  output reg empty
);

  reg [PTR_WIDTH:0] b_rptr_next;
  reg [PTR_WIDTH:0] g_rptr_next;

  assign b_rptr_next = b_rptr+(r_en & !empty);
  assign g_rptr_next = (b_rptr_next >>1)^b_rptr_next;
  assign rempty = (g_wptr_sync == g_rptr_next);
  
  always@(posedge rclk or negedge rrst_n) begin
    if(!rrst_n) begin
      b_rptr <= 0;
      g_rptr <= 0;
    end
    else begin
      b_rptr <= b_rptr_next;
      g_rptr <= g_rptr_next;
    end
  end
  
  always@(posedge rclk or negedge rrst_n) begin
    if(!rrst_n) empty <= 1;
    else        empty <= rempty;
  end
endmodule
FIFO Memory

基于二进制编码的写和读指针,数据分别写入 FIFO 或从 FIFO 读取。

module fifo_mem #(parameter DEPTH=8, DATA_WIDTH=8, PTR_WIDTH=3) (
  input wclk, w_en, rclk, r_en,
  input [PTR_WIDTH:0] b_wptr, b_rptr,
  input [DATA_WIDTH-1:0] data_in,
  input full, empty,
  output reg [DATA_WIDTH-1:0] data_out
);
  reg [DATA_WIDTH-1:0] fifo[0:DEPTH-1];
  
  always@(posedge wclk) begin
    if(w_en & !full) begin
      fifo[b_wptr[PTR_WIDTH-1:0]] <= data_in;
    end
  end
  /*
  always@(posedge rclk) begin
    if(r_en & !empty) begin
      data_out <= fifo[b_rptr[PTR_WIDTH-1:0]];
    end
  end
  */
  assign data_out = fifo[b_rptr[PTR_WIDTH-1:0]];
endmodule
Top Module
`include "synchronizer.v"
`include "wptr_handler.v"
`include "rptr_handler.v"
`include "fifo_mem.v"

module asynchronous_fifo #(parameter DEPTH=8, DATA_WIDTH=8) (
  input wclk, wrst_n,
  input rclk, rrst_n,
  input w_en, r_en,
  input [DATA_WIDTH-1:0] data_in,
  output reg [DATA_WIDTH-1:0] data_out,
  output reg full, empty
);
  
  parameter PTR_WIDTH = $clog2(DEPTH);
 
  reg [PTR_WIDTH:0] g_wptr_sync, g_rptr_sync;
  reg [PTR_WIDTH:0] b_wptr, b_rptr;
  reg [PTR_WIDTH:0] g_wptr, g_rptr;

  wire [PTR_WIDTH-1:0] waddr, raddr;

  synchronizer #(PTR_WIDTH) sync_wptr (rclk, rrst_n, g_wptr, g_wptr_sync); //write pointer to read clock domain
  synchronizer #(PTR_WIDTH) sync_rptr (wclk, wrst_n, g_rptr, g_rptr_sync); //read pointer to write clock domain 
  
  wptr_handler #(PTR_WIDTH) wptr_h(wclk, wrst_n, w_en,g_rptr_sync,b_wptr,g_wptr,full);
  rptr_handler #(PTR_WIDTH) rptr_h(rclk, rrst_n, r_en,g_wptr_sync,b_rptr,g_rptr,empty);
  fifo_mem fifom(wclk, w_en, rclk, r_en,b_wptr, b_rptr, data_in,full,empty, data_out);

endmodule
Testbench Code
module async_fifo_TB;

  parameter DATA_WIDTH = 8;

  wire [DATA_WIDTH-1:0] data_out;
  wire full;
  wire empty;
  reg [DATA_WIDTH-1:0] data_in;
  reg w_en, wclk, wrst_n;
  reg r_en, rclk, rrst_n;

  // Queue to push data_in
  reg [DATA_WIDTH-1:0] wdata_q[$], wdata;

  asynchronous_fifo as_fifo (wclk, wrst_n,rclk, rrst_n,w_en,r_en,data_in,data_out,full,empty);

  always #10ns wclk = ~wclk;
  always #35ns rclk = ~rclk;
  
  initial begin
    wclk = 1'b0; wrst_n = 1'b0;
    w_en = 1'b0;
    data_in = 0;
    
    repeat(10) @(posedge wclk);
    wrst_n = 1'b1;

    repeat(2) begin
      for (int i=0; i<30; i++) begin
        @(posedge wclk iff !full);
        w_en = (i%2 == 0)? 1'b1 : 1'b0;
        if (w_en) begin
          data_in = $urandom;
          wdata_q.push_back(data_in);
        end
      end
      #50;
    end
  end

  initial begin
    rclk = 1'b0; rrst_n = 1'b0;
    r_en = 1'b0;

    repeat(20) @(posedge rclk);
    rrst_n = 1'b1;

    repeat(2) begin
      for (int i=0; i<30; i++) begin
        @(posedge rclk iff !empty);
        r_en = (i%2 == 0)? 1'b1 : 1'b0;
        if (r_en) begin
          wdata = wdata_q.pop_front();
          if(data_out !== wdata) $error("Time = %0t: Comparison Failed: expected wr_data = %h, rd_data = %h", $time, wdata, data_out);
          else $display("Time = %0t: Comparison Passed: wr_data = %h and rd_data = %h",$time, wdata, data_out);
        end
      end
      #50;
    end

    $finish;
  end
  
  initial begin 
    $dumpfile("dump.vcd"); $dumpvars;
  end
endmodule

你可能感兴趣的:(FPGA,fpga开发)