- 卫星分析系列之 使用卫星图像量化野火烧毁面积 在 Google Colab 中使用 Python 使用 Sentinel-2 图像确定森林火灾烧毁面积
知识大胖
NVIDIAGPU和大语言模型开发教程pythonsentinel开发语言
简介几年前,当大多数气候模型预测如果我们不采取必要措施,洪水、热浪和野火将会发生更多时,我没想到这些不寻常的灾难现象会成为常见事件。其中,野火每年摧毁大量森林面积。如果你搜索不同地方的重大野火表格,你会发现令人震惊的统计数据,显示由于野火,地球上有多少森林面积正在消失。在本教程中,我将结合我已经发表过的关于下载、处理卫星图像和可视化野火的故事,量化加州发生的其中一场重大野火的烧毁面积。与之前的帖子
- Matlab裁剪降水数据:1km掩膜制作实战
咋(za)说
matlab降水数据处理裁剪掩膜制作降水数据裁剪China_Pre
1km降水数据处理-制作数据裁剪掩膜1.数据概述2掩膜文件制作示例2.1数据准备2.2matlab掩膜制作示例代码3结语 中国1km分辨率逐月降水量数据集(1901-2024)是高精度、长时间序列的气候数据产品,广泛应用于水文、生态、农业等领域的研究。本篇基于应用需要,以该数据集为输入,结合研究区shp边界文件,制作用于数据提取/裁剪的掩膜文件。下面为具体内容。1.数据概述 中国1km分辨率逐
- 安科瑞 EMS3.0 赋能零碳园区:能耗管控 + 绿电消纳,解锁碳中和 “最优解”
简婷18701998775
能源
简婷安科瑞电气股份有限公司上海嘉定2018011、引言随着全球工业化和城市化进程的加速,能源消耗和碳排放问题日益严峻。为应对气候变化,世界各国纷纷提出碳中和目标,我国也明确提出力争2030年前实现碳达峰、2060年前实现碳中和的“双碳”战略目标。在这一背景下,零碳园区作为实现区域碳中和的重要突破口,成为推动产业绿色转型和可持续发展的关键路径。然而,零碳园区的建设面临着能源管理复杂、绿电消纳困难、减
- 零碳园区:绿色未来的新引擎
安科瑞涂志18702111382
人工智能
1、零碳园区:时代的绿色呼唤全球气候变化引发广泛关注,“零碳”理念成为时代焦点。2020年位列历史上最温暖的年份之一,2025年1月地表温度更是创下历史新高。极端天气现象严重威胁人类生存。我国提出的“双碳”目标,即力争2030年前实现碳达峰,2060年前实现碳中和,对全球气候变化的应对具有至关重要的意义。产业园区作为我国经济的重要支柱,却面临着严峻的碳排放问题,其排放量占全国总量的31%。大量工业
- 人工智能赋能极端气候事件管理:重构风险预警与应急响应体系
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:极端气候成为人类社会新常态近年来,随着全球变暖加剧,极端气候事件(如暴雨、热浪、干旱、强台风等)频率持续上升、影响范围不断扩大,不仅对自然生态系统造成破坏,也严重威胁社会稳定与经济安全。根据联合国发布的《2023年全球气候报告》:全球年均高温日数创历史新高;超过30亿人处于气候灾害高风险区;城市基础设施、粮食供应链、能源系统面临系统性冲击。
- AI+区块链:代购系统如何破解碳足迹追踪“数据黑箱”?
绿色电商趋势:代购系统如何实现碳足迹追踪与可持续物流?在全球气候危机与可持续发展目标的双重驱动下,绿色电商正从概念走向实践。作为跨境电商的核心环节,代购系统如何通过技术创新实现碳足迹追踪与可持续物流,成为行业突破增长瓶颈、构建差异化竞争力的关键。本文结合技术架构、行业实践与未来趋势,解析代购系统在绿色转型中的路径选择。一、碳足迹追踪:从数据孤岛到全链路透明1.技术架构:区块链+IoT构建可信数据链
- MATLAB随机模拟技术在气候模型中的应用
本文还有配套的精品资源,点击获取简介:MATLAB是科学研究和工程领域中广泛使用的一款数学计算与编程软件,尤其在气象学和气候模拟方面有着重要的应用。’Fletcher_2019_Learning_Climate’项目通过MATLAB实现的随机模拟方法帮助理解气候变化。本文将详细探讨该项目的关键内容,包括气候模型的构成、随机过程与统计方法的运用、MATLAB编程技能、气候数据处理与分析、结果可视化以
- 人工智能驱动下的可再生能源气象预测:构建绿色能源时代的新大脑
一ge科研小菜菜
人工智能人工智能能源
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、背景:新能源快速发展下的预测焦虑为应对气候变化和实现碳中和目标,全球能源系统正在加速从“化石主导”向“可再生主导”过渡。风能、太阳能等清洁能源已成为未来能源结构的关键支柱。根据国际能源署(IEA)预测,到2050年,全球超70%的电力将来自可再生能源。然而,可再生能源具有显著的**“天气依赖性”和“波动不确定性”**,风速、光照、温度、湿度等
- 多探头分布式雷达测流系统解决方案概述
一、雷达测流的方案背景近年来,雷达测流作为一种新的测量方式,正在不断被引进和使用,其旨在解决传统测量方式无法解决的问题或难题。传统的测量方式,如直接接触式测流,受到多种因素的影响,如水中含沙量、漂浮物、气候等,导致测量结果不准确。而雷达测流设备则以非接触方法测量水体表面流速,不受水中含沙量、漂浮物、气候等因素影响,适用于一般河流、污水流速等测量。此外,雷达测流设备还特别适用于夹带污物的排水、高洪和
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 绿色算力|暴雨服务器用芯片筑起“十四五”转型新篇章
面对全球气候变化、技术革新以及能源转型的新形势,发展低碳、高效的绿色算力不仅是顺应时代的要求,更是我国建设数字基础设施和展现节能减碳大国担当的重要命题,在此背景下也要求在提升算力规模和性能的同时,积极探索推动算力基础设施向绿色、低碳、可持续的方向转型。2024年是“十四五”规划目标任务的关键一年,在政策、产业、技术多重因素引导下,我国绿色算力围绕着算力生产、供给、运营、应用的全过程,积极推进算力设
- 科学的第五范式:人工智能如何重塑发现之疆
田园Coder
人工智能科普人工智能科普
在人类探索未知的壮阔史诗中,科学方法的演进如同照亮迷雾的灯塔。从基于经验的第一范式(描述自然现象),到以理论推演为核心的第二范式(牛顿定律、麦克斯韦方程),再到以计算机模拟为标志的第三范式(气候模型、分子动力学),直至以大数据挖掘为驱动的第四范式(基因组学、高能物理),每一次范式跃迁都极大地拓展了认知的疆界。如今,我们正站在一个更恢弘转折的门槛上——第五范式:人工智能驱动的科学(AIforScie
- 基于Python的气象数据分析及可视化研究
气象数据作为地球系统科学的核心要素,其分析与可视化在气候研究、灾害预警、农业生产等领域具有战略性意义。本文以Python技术栈为基座,系统探讨气象数据的采集预处理、多维度分析模型及可视化表达范式,通过3000+字深度研究揭示Pandas时序处理、Xarray多维计算、Cartopy地理可视化等工具的核心方法论。内容涵盖全球再分析数据挖掘、极端天气模式识别、动态热力图构建等实战场景,并引入机器学习预
- 军事,本身就是智能
人机与认知实验室
人工智能大数据
军事智能后面两个字不重要,军事本身就是智能。军事活动中的许多决策和操作本质上都离不开“智能”,不论是指人类的智慧,还是现代技术和人工智能的应用。军事行动本质上是一种复杂的决策过程,涉及到战略、战术、资源配置、情报分析等多个方面。每一个决策都需要充分的智慧和智能的支持,考虑的因素包括敌我态势、地理环境、气候、技术优势等。人类指挥官的战略智慧和经验在军事行动中至关重要,但随着现代技术的发展,智能化技术
- AI人工智能 Agent:在节能减排中的应用
AI天才研究院
AgenticAI实战AI人工智能与大数据AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1全球气候变化与节能减排随着工业化进程的加速和人口的不断增长,全球气候变化问题日益严峻。温室气体排放导致的全球变暖、极端天气事件频发等问题,已经对人类的生存环境和社会经济发展造成了严重威胁。因此,节能减排已成为全球共识,各国政府和企业都在积极探索和实施各种节能减排措施。1.2人工智能技术的兴起近年来,人工智能(AI)技术发展迅猛,并在各个领域取得了显著成果。AI技术具有强大的数据分
- 专题:2025全球能源转型与电力数字化发展报告|附300+份报告PDF、原数据表汇总下载
原文链接:https://tecdat.cn/?p=42778在全球能源需求持续增长、气候环境挑战日益严峻的背景下,能源转型、零碳转型和数字化转型成为各国共同面临的长期且复杂的系统性工程。构建新型电力系统是应对这三大转型的关键,而数字化转型则是支撑其发展的重要路径。本报告汇总解读基于《华为技术有限公司:2024年全球能源转型及数字化转型成功实践报告-加速电力智能化》《薪智:2025年Q2电力行业薪
- 遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
科研的力量
生态遥感双碳chatgptGEE卫星遥感数据
以EarthEngine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,G
- 基于Python Anaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案
神经网络15044
仿真模型算法机器学习pythoncnnlstm
以下是一个基于PythonAnaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案。内容涵盖数据预处理、模型构建、训练优化、预测可视化和结果分析等核心环节,代码与文字说明共计超过6000字。基于CNN-LSTM的碳交易价格预测系统设计与实现一、项目背景与目标1.1碳交易市场概述碳交易作为应对气候变化的重要市场机制,其价格波动直接影响企业减排决策。准确预测碳价(CarbonEmis
- SWAT模型高阶应用暨无资料地区建模、不确定分析与气候变化、土地利用对面源污染影响模型改进及案例分析
小艳加油
水资源SWAT模型气候变化土地利用
流域水资源和水生态问题逐渐成为制约社会经济和环境可持续发展的重要因素。SWAT模型是一种基于物理机制的分布式流域水文与生态模拟模型,能够对流域的水循环过程、污染物迁移等过程进行精细模拟和量化分析。SWAT模型目前广泛应用于流域水文过程研究、污染负荷评估以及水资源与生态保护等领域,成为流域研究中不可或缺的重要工具。专题一SWAT模型应用热点分析1.1SWAT模型应用文献解析及热点剖析1.2讨论专题二
- 新能源汽车BMS开发的ISO 16750-1 2018标准解析
杏花朵朵
本文还有配套的精品资源,点击获取简介:ISO16750-12018是针对车载电子设备环境适应性的重要国际标准,特别适用于新能源汽车电池管理系统(BMS)的设计与验证。本标准概述了机械环境、气候环境及电磁兼容性方面的耐受性测试,对于BMS的可靠性和安全性至关重要。标准为BMS开发人员提供了一整套从设计验证到功能安全分析的开发流程,确保BMS全生命周期内的性能和可靠性。1.ISO16750-12018
- SWAT模型高阶应用暨SWAT模型无资料地区建模、不确定分析及气候、土地利用变化对水资源与面源污染影响分析
Yolo566Q
经验分享
一:SWAT模型应用热点分析1.1SWAT模型应用文献解析及热点剖析1.2讨论二:无资料地区快速建立SWAT模型2.1无资料地区DEM数据制备2.2无资料地区土地利用制备2.3无资料地区土壤数据制备2.4无资料地区气象数据制备2.5无资料地区SWAT模型率定验证2.6案例分析:遥感产品和SWAT模型结合研究三:ArcGIS高级及应用3.1ArcGIS高级操作3.2ArcGIS水文分析及SWAT应用
- SWAT模型高阶应用——无资料地区建模、不确定分析及气候变化、土地利用对面源污染影响模型
青春不败 177-3266-0520
水文水资源SWAT模型水文水资源水文模型面源污染土地利用
一:SWAT模型应用热点分析1.1SWAT模型应用文献解析及热点剖析二:无资料地区快速建立SWAT模型2.1无资料地区DEM数据制备2.2无资料地区土地利用制备2.3无资料地区土壤数据制备2.4无资料地区气象数据制备2.5无资料地区SWAT模型率定验证2.6遥感产品和SWAT模型结合研究三:基于控制单元的流域SWAT模型建立3.1ArcGIS高级操作3.2ArcGIS水文分析及SWAT应用3.3p
- 基于mapreduce的气候分析系统设计与实现
赵谨言
python论文毕业设计经验分享python
标题:基于mapreduce的气候分析系统设计与实现内容:1.选题依据1.1.选题背景随着全球气候变化问题日益严峻,气候数据的分析与研究变得至关重要。气候数据具有海量、多源、异构等特点,传统的数据处理技术在处理如此大规模的气候数据时面临着效率低下、计算能力不足等问题。例如,气象卫星每天会产生数以PB级别的观测数据,包括温度、湿度、气压等多个维度的信息。而这些数据的有效分析对于气候模型的建立、气象灾
- AI+遥感应用深度报告:气候变化监测中的CV技术突破点(人工智能丨智慧农业丨机器学习丨计算机视觉丨深度学习丨神经网络)
唐宇迪(学习规划+技术答疑)
人工智能机器学习深度学习计算机视觉目标检测神经网络视觉检测
一、技术价值量化公式解析技术价值=(监测精度的1.2次方×时空分辨率)÷计算成本×预测提前量的自然对数公式要素定义(5级量化标准):指标定义分级标准(1-5分)监测精度温度/降水等参数测量误差1分:误差>5%;2分:3%-5%;3分:1%-3%;4分:0.5%-1%;5分:30天×100km;2分:15天×50km;3分:7天×25km;4分:1天×10km;5分:小时级×1km计算成本单节点年运
- CASA模型(讲解+案例实践)NDVI计算、FLASSH大气校正、未来土地利用预测
科研的力量
生态遥感双碳CASA模型CMIP6土地利用气象数据NDVIFLASSH大气校正ArcGIS软件
由于全球变暖、大气中温室气体浓度逐年增加等问题的出现,“双碳”行动特别是碳中和已经在世界范围形成广泛影响。碳中和可以从碳排放(碳源)和碳固定(碳汇)这两个侧面来理解。陆地生态系统在全球碳循环过程中有着重要作用,准确地评估陆地生态系统碳汇及碳源变化对于研究碳循环过程、预测气候变化及制定合理政策具有重要意义。CASA(Carnegie-Ames-StanfordApproach)模型是估算陆地生态系统
- 中国城市可再生能源数据集(2005-2021)
数据皮皮侠AI
人工智能矩阵动态规划线性代数算法
1794中国城市可再生能源数据集(2005-2021)数据简介中国城市可再生能源数据集,包含风电最终能耗、核点最终能耗、水电最终能耗、天然气最终消耗量、火电最终能耗、煤炭最终能耗、最终能耗、其他最终能耗、热量最终能耗、石油最终能耗、太阳能最终能耗共11种能源消耗,共327个地级市和4个直辖市的数据,整理成能源消耗的面板数据。中国在减缓气候变化方面的作用越来越关键,节能减排政策的制定需要城市层面的信
- #高考志愿填报# 地理位置对志愿选择的影响!
Luntu
www.zxgj.cn高考
#高考志愿填报#地理位置对志愿选择的影响!一是生活习惯,包括饮食,气候和生活等举个例子,我有一个南方的亲戚,我一直鼓励他来北方上大学,本来都说的挺投机的,后来他听说北方洗澡的场景...就果断拒绝了。不同地区的生活环境和风俗习惯都有很大的区别,如果选择北方高校,可以体验到冰天雪地的乐趣,但是天气较为干燥,如果去了南方,可以享受四季常青的温暖,但是气候湿润,夏天又潮又湿像个大蒸笼一样,而且各地的饮食习
- 农产品产量智能预测系统-项目介绍
数字化与智能化
机器学习场景落地-智慧农业人工智能农产品产量智能预测系统
一、项目介绍1、项目背景农业在全球粮食安全中占据着至关重要的地位,是人类生存和发展的基础产业。然而,当前农业生产正面临着诸多严峻挑战。气候变化导致极端天气事件愈发频繁,干旱、洪涝、高温等灾害严重影响农作物的生长和发育;土地使用变化使得可耕种土地面积减少,土地质量下降;人口的持续增长则不断加大对农产品的需求。在这些因素的交织影响下,传统的农作物产量预测方式已难以满足现代农业发展的需求。传统预测方法,
- 农业智能化:人工智能开启现代农业新纪元
晓晓不觉早
人工智能
在全球粮食安全挑战与气候变化加剧的双重压力下,人工智能技术正以前所未有的方式重构农业生产体系。中国作为传统农业大国,在"人工智能+"战略指引下,正在将千年农耕文明与前沿数字技术深度融合,催生出具有中国特色的智慧农业新范式。这场以AI为驱动的农业革命,不仅关乎14亿人的饭碗安全,更代表着人类与自然协同进化的新方向。一、技术突破重塑生产范式在育种技术领域,人工智能正突破生物遗传密码的认知边界。中国农业
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不