- 菜鸟的成长之路
东风吹破了青花瓷
计算机数据结构与算法基础篇入门
菜鸟的成长之路基础能力数据结构与算法数据结构链表数组栈队列字典bitset树堆完全二叉树平衡二叉树二叉查找树B树红黑树lsm树图通用算法排序十种排序算法查找二分查找深度广度优先搜索分治贪心回朔动态规划网络协议OSITCP/IP状态转移拥塞控制可靠工作原理socket编程HTTP/HTTPSIO模型同步IOreactor阻塞IO非阻塞IOIO多路复用信号驱动异步IOC10K问题长链接短链接编译原理l
- 新书速览|细说PyTorch深度学习:理论、算法、模型与编程实现
全栈开发圈
深度学习pytorch算法
超详细的PyTorch深度学习入门书,100余个编程示例+6大热点案例,大咖带路,边学边实践。本书特点:1.专家编撰:由资深专家精心编撰,通俗易懂,娓娓道来2.范例丰富:100余个编程教学示例,帮你深入理解,边学习、边操练。3.实战应用:6大典型应用,原理与实操并重,快速掌握提升实战能力。4技术先进:视觉transformer模型详解,紧跟大模型核心技术。5易于上手:Pytorch详解并使用Pyt
- 装备效能评估方法TOPSIS法(优劣解距离法)深度解析:原理、实现与行业应用案例
燃灯工作室
Aipython
一、方法概述1.1核心思想TOPSIS(TechniqueforOrderPreferencebySimilaritytoIdealSolution)通过计算各方案与正理想解(最优解)和负理想解(最劣解)的相对接近度进行排序。其核心原理可以用三维空间形象表示:距离距离距离距离方案1正理想解负理想解方案21.2方法特点适用性:适用于多目标决策、多方案优选优势:直观的几何解释,可处理不同量纲指标局限:
- 【YOLO模型】(1)--YOLO是什么
方世恩
YOLOYOLO人工智能目标检测
一、什么是YOLOYOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。1.核心思想它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。2.原理YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术
- Linux内存管理:深度解析与探索
深度Linux
Linux内存管理linuxLinux内核内存映射
你是否想过,在Linux系统中,当你打开一个程序、浏览网页或者处理文件时,这些数据都存放在哪里呢?答案就是内存。Linux内存管理就像是一个超级大管家,它负责管理着系统中所有数据的“家”。这个“家”的空间有限,却要容纳各种各样的数据,而且要保证每个数据都能被快速准确地找到和使用。它需要智慧地分配房间(内存空间),合理地安排住户(进程),还要及时清理不再需要的杂物(回收内存)。今天,我们就一起深入了
- ocr智能票据识别系统|自动化票据识别集成方案
OCR_API
接口ocr自动化运维
在企业日常运营中,对大量票据实现数字化管理是一项耗时且容易出错的任务。随着技术的进步,OCR(光学字符识别)智能票据识别系统的出现为企业提供了一个高效、准确的解决方案,不仅简化了财务流程,还大幅提升了工作效率。一、什么是OCR智能票据识别系统?OCR智能票据识别系统是一种基于先进图像处理和深度学习算法的技术,能够自动从各类票据中提取关键信息,并将其转换为结构化数据。翔云发票识别系统可以应用于增值税
- DeepSeek与医院电子病历的深度融合路径:本地化和上云差异化分析
Allen_LVyingbo
医疗高效编程研发健康医疗系统架构deepseek大模型
一、引言1.1研究背景与意义在医疗信息化快速发展的当下,电子病历系统已成为医院信息管理的核心构成。电子病历(EMR)系统,是指医务人员在医疗活动过程中,使用医疗机构信息系统生成的文字、符号、图标、图形、数据、影像等数字化信息,并能实现存储、管理、传输和重现的医疗记录,是病历的一种记录形式。它承载着患者从初诊到治疗结束的所有关键信息,涵盖症状描述、检查结果、诊断结论、治疗方案等内容。电子病历系统的重
- 在linux 中搭建deepseek 做微调,硬件配置要求说明
慧香一格
学习AIlinux服务器deepseek
搭建可参考使用deepseek-CSDN博客官方网站:DeepSeekDeepSeek是一个基于深度学习的开源项目,旨在通过深度学习技术来提升搜索引擎的准确性和效率。如果你想在Linux系统上搭建DeepSeek,你可以遵循以下步骤。这里我将提供一个基本的指导,帮助你从零开始搭建一个基础的DeepSeek环境。1.安装依赖首先,确保你的Linux系统上安装了Python和pip。DeepSeek主
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- 推动AI云产业向深向实,云·AI·算力创新发展大会即将启幕
科技云报道
云计算AI云计算
近年来,以AIGC为代表的新兴技术正加速演进,全球站在智能化变革的起点,人工智能与云计算的深度融合,也驱动云计算进入第三次发展浪潮,迎来前所未有的机遇。伴随AI的快速发展,2024年《政府工作报告》明确提出,制定支持数字经济高质量发展政策,深化大数据、人工智能等研发应用,开展“人工智能+”行动。这意味着AI正在成为产业创新的核心抓手和驱动新质生产力的关键引擎,而云计算作为基础底座将在其中扮演至关重
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- 码农避坑指南:Python编程全领域易错点深度剖析与解决方案
tekin
Pythonpython编程误区性能优化代码质量数据安全特定领域编程开发技巧
在编程世界中,无论是新手还是经验丰富的开发者,都难免陷入各种误区。从Python多线程的使用到微服务架构的管理,每个编程领域都隐藏着容易被忽视的陷阱。这些误区不仅影响代码性能、可读性和维护性,还可能带来安全隐患。本文将深入剖析编程全领域的易错点,通过实际案例和详细讲解,为你提供全面的解决方案,助你避开这些“坑”,编写出更高效、更安全、更易维护的代码。编程语言特性与最佳实践Python多线程与GIL
- 深入剖析模型推理:原理、技术与挑战
♢.*
人工智能模型推理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!引言在当今人工智能飞速发展的时代,模型
- AI 编程工具崛起,程序员的未来是否岌岌可危?
一、AI编程工具的现状AI编程工具的出现与迅猛发展是技术进步的必然结果。这一趋势首先得益于开源社区和代码托管平台提供的丰富代码样本,它们为AI模型的学习提供了充足的素材。其次,编程语言本身的严格语法和结构化特点,使得AI能够高效、精确地理解和生成代码。再者,深度学习技术的突破,尤其是大语言模型在代码理解与生成方面的显著进展,为AI编程提供了坚实的技术基础。最后,随着软件开发需求的不断增加,传统开发
- DeepSeek:国产AI的荣耀之光
晚风る
AI人工智能人工智能
DeepSeek:国产AI的荣耀之光在国产AI领域,DeepSeek(深度求索)犹如一颗璀璨的新星,以其卓越的技术实力和创新精神,迅速成为行业的焦点,被誉为“国产之光”。本文将深入探讨DeepSeek的技术亮点、市场表现以及其对行业的深远影响。一、技术突破:创新与高效并存1.混合专家架构(MoE)DeepSeek-V3采用了自主研发的混合专家架构(MoE),模型参数高达6710亿,激活参数为370
- AI赋能教育:深度解析大模型在教育场景中的应用与架构设计【无标题】
和老莫一起学AI
人工智能语言模型产品经理ai自然语言处理大模型程序员
随着人工智能技术的飞速发展,尤其是大模型的崛起,教育行业迎来了全新的机遇和挑战。教学模式的变革、个性化学习的深化、教育管理的智能化,大模型正以不可忽视的力量推动着教育的数字化升级。在这篇文章中,我们将基于一张完整的应用设计架构图,从应用场景到AI核心能力、训练标注平台、智能处理引擎以及业务数据,全方位剖析大模型如何助力教育行业实现突破,真正实现“AI赋能教育,重塑未来”。一、应用场景:从传统教育到
- 奥比中光3D机器视觉相机能连接halcon吗?
视觉人机器视觉
机器视觉3D3d数码相机视觉检测c#
奥比中光的设备与Halcon的兼容性可以通过以下方式实现:数据接口的通用性奥比中光的相机(如AstroPro、大白等)支持通过UVC协议获取彩色图像,深度数据则通过OpenNI或ROS2接口传输105。若Halcon支持这些协议或标准接口(如ROS消息、OpenCV图像流),则可通过直接调用或二次开发实现连接。例如,通过Python或C#脚本将图像数据从相机传输至Halcon的处理流程中。SDK与
- 告别重复劳动!基于注解的通用列表导出组件设计与实现
不会说话の猴子
springbootjava
亲爱的朋友们,热烈欢迎你们来到我的创意编程空间!能与你们在这里相聚,我感到无比激动和荣幸。在这个充满挑战与机遇的时代,我们每个人都在不断追求知识的深度与广度。而我的博客,正是一个激发灵感与分享智慧的乐园。在这里,你们不仅能够发现有趣的编程项目和实用的技术资源,还可以畅所欲言,分享你们的经验与想法。我真诚地期待着你们的到来,愿我们在这片小小的天地里携手前行,共同探索未知的领域。-----------
- 线性代数导引:张量与张量空间
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
线性代数,张量,张量空间,深度学习,机器学习,人工智能1.背景介绍在现代人工智能领域,深度学习和机器学习算法的蓬勃发展,使得对数据的高效处理和表示能力提出了更高的要求。线性代数作为数学基础,为理解和构建这些算法提供了坚实的基础。而张量,作为一种高维数组的表示形式,成为了深度学习和机器学习的核心数据结构。本篇文章将从线性代数的角度出发,深入探讨张量与张量空间的概念,并阐述其在深度学习和机器学习中的重
- 提示词工程中的逻辑推理结构
由数入道
人工智能提示词工程人工智能提示词工程
概念介绍:逻辑推理结构在提示词工程中是指通过系统化、精确化的推理方法,帮助生成内容时能够严谨且条理清晰地组织论点、论据及结论,确保思路顺畅且具有逻辑一致性。推理结构通常基于演绎法和归纳法两种思维方式,分别从一般到特殊和从特殊到一般两种方向进行推理,确保生成的内容具有深度、精确性,并能够在复杂的主题中提供清晰的解答或分析。使用场景:需要进行深度分析和推理的场景,尤其适用于以下内容:技术文档:需要精准
- 每天五分钟深度学习框架pytorch:搭建谷歌的Inception网络模块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch网络人工智能机器学习Inception
本文重点前面我们学习了VGG,从现在开始我们将学习谷歌公司推出的GoogLeNet。当年ImageNet竞赛的第二名是VGG,而第一名就是GoogLeNet,它的模型设计拥有很多的技巧,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构GoogLeNet的网络结构如图所示就是GoogLeNet的网络结构,在这个网络结构中我们可以看到红色框起来的地方,他就是Inception块,
- Python:基于Scapy的深度包分析与网络攻击防御方案
Lethehong
Python在手bug溜走!码农的快乐你不懂~pythonscapysyndns
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页AI感谢这位博主提出的问题,如果在以后的文章中,大家有其他相关的问题,也可以积极的在评论区评论出来,博主我会的,我会积极的收纳问题,并及时的做出回应!目录1.环境准备2.基础流量捕获3.深度协议解析4.异常流量检测逻辑4.1SYNFlood检测4.2DNS放大攻击检测5.高级分析技术5.
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- Pytorch实现mnist手写数字识别
Zn要学习
python
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**我的环境:语言环境:Python3.8编译器:JupyterLab深度学习环境:torch==1.12.1+cu113torchvision==0.13.1+cu113一、前期准备1.设置GPU如果设备上支持GPU就使用GPU,否则使用CPUimporttorchimporttorch.nnasnnimpo
- 《DeepSeek训练算法:开启高效学习的新大门》
人工智能深度学习
在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。一、独特的架构基础DeepSeek以Transformer架构为基石,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数
- 理解计算机系统_虚拟内存(二)缓存
jllws1
计算机系统操作系统深入理解计算机系统操作系统
前言以(以下称“本书”)内容为基础,对程序的整个过程进行梳理。本书内容对整个计算机系统做了系统性导引,每部分内容都是单独的一门课.学习深度根据自己需要来定引入接续上一帖物理和虚拟寻址1>物理寻址CPU访问内存的最自然方式就是使用物理地址,我们把这种方式称为物理寻址(黑体字是原话),本书P560页有个示意图,访问地址4开始的4字节字.假设地址4的物理地址是0x12345678,那么用汇编语言是这样写
- 本地部署DeepSeek模型技术指南
Evaporator Core
apacheDoris人工智能deepseek
DeepSeek模型是一种先进的深度学习模型,广泛应用于自然语言处理、计算机视觉等领域。为了充分利用DeepSeek模型的强大功能,许多开发者和研究人员选择在本地环境中部署该模型。本文将详细介绍如何在本地环境中部署DeepSeek模型,包括环境准备、模型下载、配置、优化以及代码实现等内容。通过本文的指导,您将能够在本地成功部署并运行DeepSeek模型。1.环境准备在部署DeepSeek模型之前,
- DeepSeek R1蒸馏版模型部署的实战教程
herosunly
DeepSeek从入门到精通deepseek大模型人工智能实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- error: array has incomplete element type ‘char []‘
Sleepless_斑马
Linux学习C语言二维数组函数参数编译错误修复方法
原代码:voidexplain_input(char*,int*,chara[][]);报错:error:arrayhasincompleteelementtype'char[]'原因:可以用二维数组名作为实参或者形参,在被调用函数中对形参数组定义时可以指定所有维数的大小,也可以省略第一维的大小说明,但不可以省略第二位或更高维如:voidFunc(intarray[3][10])voidFunc(
- yiui易柚7 是Android什么版本,康佳YIUI易柚系统升级5.0版本
dfnmigc
yiui易柚7是Android什么版本
YIUI易柚是康佳基于最新Android平台深度优化和开发的专业电视操控系统。YIUI易柚适合不同用户的使用习惯,操作简单易用,是电视与安卓的完美结合。2014年5月,康佳在互联网思维的战略指引下,强势推出国内领衔的专业电视操控系统YIUI易柚2.0。经历了多次升级完善,目前已更新至5.0版本。先后推出多个版本,迭代更新速度快YIUI易柚2.02014年5月,YIUI易柚2.0电视操控系统首次亮相
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓