- LLM中 最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法深度学习人工智能
LLM中最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?在大语言模型(LLM)中,最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息,这是由LLM的核心架构(以Transformer为基础)决定的,具体可以从以下角度理解:1.核心机制:自注意力(Self-Attention)的作用现代LLM(如GPT系列、Qwen等)均基于Transformer架构,其核心是自注意力机制。在
- AI MCP教程之 什么是 MCP?利用本地 LLM 、MCP、DeepSeek 集成构建您自己的 AI 驱动工具
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能mcpdeepseek
介绍利用模型上下文协议(MCP)的工具吸引了我们的注意力—将AI变成触手可及的生产力引擎。它们巧妙、高效,让人难以抗拒。但如果您可以将这样的功能添加到自己的工具中,会怎么样呢?在本指南中,我将引导您构建一个具有本地运行的大型语言模型(LLM)和MCP集成的AI工具-让您以类似的方式自动执行利用MCP的工具您喜欢的任务。推荐文章《AnythingLLM教程系列之12AnythingLLM上的Olla
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- Llama-Omni会说话的人工智能“语音到语音LLM” 利用低延迟、高质量语音转语音 AI 彻底改变对话方式(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程llama人工智能nvidiallm
介绍“单靠技术是不够的——技术与文科、人文学科的结合,才能产生让我们心花怒放的成果。”——史蒂夫·乔布斯近年来,人机交互领域发生了重大变化,尤其是随着ChatGPT、GPT-4等大型语言模型(LLM)的出现。虽然这些模型主要基于文本,但人们对语音交互的兴趣日益浓厚,以使人机对话更加无缝和自然。然而,实现语音交互而不受语音转文本处理中常见的延迟和错误的影响仍然是一个挑战。关键字:Llama-Omni
- 【AI大模型】LLM模型架构深度解析:BERT vs. GPT vs. T5
我爱一条柴ya
学习AI记录ai人工智能AI编程python
引言Transformer架构的诞生(Vaswanietal.,2017)彻底改变了自然语言处理(NLP)。在其基础上,BERT、GPT和T5分别代表了三种不同的模型范式,主导了预训练语言模型的演进。理解它们的差异是LLM开发和学习的基石。一、核心架构对比特性BERT(BidirectionalEncoder)GPT(GenerativePre-trainedTransformer)T5(Text
- [论文阅读]Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smal
0x211
论文阅读语言模型人工智能自然语言处理
中文译名:逐步蒸馏!以较少的训练数据和较小的模型规模超越较大的语言模型发布链接:http://arxiv.org/abs/2305.02301AcceptedtoFindingsofACL2023阅读原因:近期任务需要用到蒸馏操作,了解相关知识核心思想:改变视角。原来的视角:把LLMs视为噪声标签的来源。现在的视角:把LLMs视为能够推理的代理。方法好在哪?需要的数据量少,得到的结果好。文章的方法
- 【实战AI】macbook M1 本地ollama运行deepseek
东方鲤鱼
chatAImacosaillamaAIGCchatgpt
由于deepseek官网或者Aapi调用会有网络延迟或不响应的情况,故在本地搭建部署;前提条件1.由于需要拉取开源镜像,受网络限制,部分资源在前提中会下载的更快!请自行;2.设备macbookM132G下载ollamaOllama是一款跨平台推理框架客户端(MacOS、Windows、Linux),专为无缝部署大型语言模型(LLM)(如Llama2、Mistral、Llava等)而设计。通过一键式
- LLaMA-Omni 深度解析:打开通往无缝人机语音交互的大门
kakaZhui
前沿多模态大模型:论文与实战llama交互LLMTTS语音识别语音合成人工智能
一、引言:语音交互大模型今天我们来看语音交互大模型LLaMA-Omni,它由中国科学院计算技术研究所的研究者们推出,是一个基于强大的Llama-3.1-8B-Instruct构建的语音语言模型。LLaMA-Omni不仅实现了低至226ms的惊人交互延迟,还能同时生成高质量的文本与语音回复,真正意义上让大语言模型(LLM)具备了“听说”的能力。这篇博客将带你由浅入深,全方位地探索LLaMA-Omni
- 在LLM快速迭代时代构建持久AI应用:架构设计与实施策略
引言:技术浪潮下的开发困境大型语言模型(LLM)的发展速度令人瞠目:从GPT-3到GPT-4,从Claude1到Claude3,从Llama1到Llama3,迭代周期正在从"年"缩短到"月"。作为一名AI应用开发者,我亲身经历了这种技术浪潮带来的挑战:昨天精心调优的prompt今天可能失效;上个季度集成的模型这个季度已有更优选择;刚完成的功能设计瞬间被新模型的能力超越。在如此快速变化的环境中,如何
- 大型语言模型(LLM, Large Language Models)基模和 Chat 模型之间的区别
一、概述最近看大模型相关的知识,有看到大模型都有基础模型(base)和对话模型(chat),不太清楚什么时候用到基础模型,什么时候用到对话模型,故有此文。通过了解,最简单的概述就是基于基础模型会训练出一个对话(Chat)模型,对话模型主要用于对话场景,基础模型主要做文本生成,没有上下文对话的能力。在模型命名上也能看出来区别,例如:Qwen-72B和Qwen-72B-ChatChatGLM3-6B-
- SpringBoot集成LangChain4j:构建智能AI应用全解析
java干货仓库
八股文汇总Spring大模型springboot人工智能后端
在企业级应用中融入大语言模型(LLM)能力已成为趋势,而LangChain4j作为专为Java设计的LLM集成框架,与SpringBoot的结合为开发者提供了强大而灵活的解决方案。本文将从基础概念到高级应用,全面解析如何利用这一组合构建智能AI应用。一、LangChain4j概述1.1什么是LangChain4j?LangChain4j是一个开源Java框架,灵感来源于Python的LangCha
- 详解LLMOps,将DevOps用于大语言模型开发
大家好,在机器学习领域,随着技术的不断发展,将大型语言模型(LLMs)集成到商业产品中已成为一种趋势,同时也带来了许多挑战。为了有效应对这些挑战,数据科学家们转向了一种新型的DevOps实践LLM-OPS,专为大型语言模型的开发和维护而设计。本文将介绍LLM-OPS的核心思想,并分析这一策略如何帮助数据科学家更高效地运用DevOps的优秀实践,从而在语言模型的开发和部署过程中,提升工作效率和成果的
- 代码与 AI 的交响乐:探索 avante.nvim 的智能编程革命
步子哥
人工智能
在编程的世界里,代码不仅是逻辑的堆砌,更是一场思想与技术的交响乐。avante.nvim,一个运行在Neovim上的AI驱动插件,正以其智能化的代码补全、生成和编辑功能,为开发者奏响一曲高效与创新的乐章。本文将带你走进avante.nvim的世界,探索它如何通过大语言模型(LLM)和上下文感知机制,重新定义编程的艺术与科学。从灵感火花到代码现实:AI驱动的编程新时代想象一下,你正在编写一个复杂的P
- 零代码玩转大模型!LLaMA Factory:你的专属模型精修师
jane_xing
人工智能llama
你是否曾对大语言模型(LLM)的强大能力心驰神往,却苦于以下难题?想定制专属模型?微调代码看不懂,环境配置太复杂…硬件资源有限?动辄需要数张A100,普通设备望而却步…中文任务不给力?原生模型中文理解弱,效果难达预期…部署门槛高?模型优化、压缩、服务化步步是坎?好消息是:LLaMAFactory来拯救你啦!它就像一家功能齐全的“模型精修店”,让你无需深厚AI功底,也能轻松定制、优化和部署大模型!一
- 掌握LLM工程课,让你的AI之旅充满惊喜
掌控AI时代的密码:深入LLM工程课程在人工智能迅猛发展的今天,对大语言模型(LLM)的深入理解和应用能力已经成为引领技术潮流的重要基石。为了帮助更多人掌握这项核心技术,特此分享关于LLM工程的一项出色在线课程。这门课程引导您通过一段为期八周的旅程,掌握AI及大语言模型的精髓,从而达到熟练应用的水平。探索LLM的世界课程以项目为驱动,通过循序渐进的学习模块,帮助您在LLM的世界中行稳致远。每周的内
- 大模型 Agent(智能体)技术简介
北京地铁1号线
自然语言处理与大语言模型大模型语言模型Agent
大模型Agent(智能体)技术是当前人工智能领域的前沿方向,它赋予大型语言模型(LLM)自主感知、规划、决策和行动的能力,使其不再局限于“被动应答”,而是能主动完成复杂任务。简单来说,Agent是一个以LLM为“大脑”的自主智能系统,能够理解目标、使用工具、与环境交互并最终解决问题。一、为什么需要Agent?——大模型的局限与Agent的使命传统的大语言模型(如GPT-4、Claude、Llama
- Spring AI 教程(一)概述
PG Thinker
SpringAISpringChatGPT人工智能springjavaSpringAI
前言 我在23年11月那会儿关注了SpringAI项目,当时我恰好正热衷于大语言模型的开发,然而当时主流的开发语言只有Python,Java生态中并没有强大的框架供我们使用。 我当时也是靠一些封装OpenAI接口的SDK包来玩ChatGPT的,但是整体的体验较差。好在我通过一些技术交流群了解了一个正在处于实验阶段的项目:SpringAI。于是果断前往它的Github仓库进行学习,而我也恰好见证了S
- 人工智能-基础篇-28-模型上下文协议--MCP请求示例(JSON格式,客户端代码,服务端代码等示例)
weisian151
人工智能人工智能json网络
目前,MCP(ModelContextProtocol)协议并不是一个广泛标准化或公开开源的协议标准。不过,在某些AI工具链和LLM开发框架中,确实出现了以“MCP”命名的内部通信机制,尤其是在与语言模型代理(LLMAgent)和工具调用接口相关的系统中。假设场景:MCP是用于Agent与外部工具之间交互的协议。其核心目标是:1、标准化请求/响应格式2、支持多轮对话上下文3、支持工具调用(tool
- 从数据集视角看——大语言模型(LLMs)的训练、微调和推理
爱看烟花的码农
AIGCNLP语言模型人工智能自然语言处理
1.大语言模型训练的整体框架大语言模型的训练是一个复杂的过程,涉及数据准备、模型架构、优化策略和推理部署。以下是整体框架的详细分解:1.1训练阶段预训练:在海量文本数据上学习通用语言表示,类似于“学习语言的百科全书”。微调:针对特定任务调整模型参数,类似于“针对考试复习重点内容”。指令微调:在对话或指令数据集上优化,使模型更适合交互式任务。推理:使用训练好的模型进行预测或生成。1.2核心组件数据集
- 揭秘12-Factor Agents:打造可靠LLM应用的秘诀
人工智能我来了
人工智能AI人工智能
探索12-FactorAgents:构建生产级LLM应用的新范式在AI飞速发展的时代,构建真正能够投入生产使用的大型语言模型(LLM)驱动的软件变得尤为重要。本文将带您了解“12-FactorAgents”这一全新指南,揭示如何构建可靠的LLM应用程序,以将其成功交付到用户手中。引言随着人工智能技术的快速推进,利用LLM构建面向客户的高质量应用程序的需求变得迫切。然而,市面上宣称为“AIAgent
- 从数据到智慧:AI原生知识库构建的完整技术栈解析
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据AI-native大数据ai
从数据到智慧:AI原生知识库构建的完整技术栈解析关键词AI原生知识库、知识图谱、向量数据库、大语言模型、RAG技术、知识工程、智能问答系统摘要在人工智能飞速发展的今天,构建能够真正理解、组织和应用知识的系统已成为企业数字化转型的核心竞争力。本文将深入剖析AI原生知识库的完整技术栈,从数据采集与预处理,到知识表示与建模,再到存储架构与检索增强生成技术,全方位解读如何将原始数据转化为可行动的智慧。我们
- 1. RAG 权威指南:从本地实现到生产级优化的全面实践
javascript
1.RAG权威指南:从本地实现到生产级优化的全面实践大型语言模型(LLM)的知识受限于其训练数据,这是一个众所周知的痛点。检索增强生成(RAG)技术应运而生,它如同一座桥梁,将这些强大的基础模型与企业所需的实时、动态信息连接起来,极大地拓展了AI的能力边界。RAG将LLM从一个封闭的知识库,转变为一个能够提供准确、实时且紧密贴合上下文的动态工具。本文将作为你的向导,带你深入探索RAG的世界。我们首
- AI技术正在深度重构全球产业格局,其影响已超越工具属性,演变为推动行业变革的核心引擎。
一、AI如何重塑AI的工作与行业(AI助手领域)能力升级理解与生成:基于LLM(大语言模型),AI能处理开放式问题、撰写报告、翻译代码,替代部分人类知识工作。个性化交互:通过用户历史对话分析,提供定制化建议(如学习计划、投资策略)。多模态扩展:结合图像/语音识别(如GPT-4V),实现图文分析、医学影像解读等跨模态任务。行业变革客服行业:AI客服处理70%+常规咨询(如阿里小蜜),人力转向复杂问题
- Gemini vs DeepSeek:Transformer 架构下的技术路线差异与企业级选择
charles666666
transformer架构深度学习语言模型产品经理人工智能
一、引言:从商业价值切入Gemini和DeepSeek都基于Transformer架构,但在技术路线和应用场景上各有侧重。本文将解密同源Transformer下的技术分野,帮助企业做出更明智的大模型选型决策。二、Transformer核心机制精要Transformer架构是现代大语言模型的基础,其核心机制包括自注意力机制和前馈神经网络。自注意力机制使模型能够捕捉序列中元素的全局依赖关系,但也是GP
- 大型语言模型中的提示工程系统综述:技术与应用
AI专题精讲
Paper阅读语言模型人工智能自然语言处理
摘要提示工程已成为扩展大型语言模型(LLMs)和视觉语言模型(VLMs)能力的不可或缺的技术。这种方法利用任务特定的指令(称为prompt),在不修改核心模型参数的情况下增强模型效能。与更新模型参数不同,prompt仅通过给定指令即可引出所需的模型行为,从而实现预训练模型在下游任务中的无缝集成。prompt可以是提供上下文以引导模型的自然语言指令,也可以是激活相关知识的学习向量表示。这一新兴领域已
- MCP Streamable HTTP 样例(qbit)
pythonagent
前言模型上下文协议(ModelContextProtocol,MCP),是由Anthropic推出的开源协议,旨在实现大语言模型与外部数据源和工具的集成,用来在大模型和数据源之间建立安全双向的连接。本文代码技术栈Python3.11.8FastMCP2.10.3MCP的传输机制StandardInput/Output(stdio)StreamableHTTPServer-SentEvents(SS
- 从零开始:构建支持上下文窗口的AI原生应用实战指南
AI天才研究院
AI人工智能与大数据AI-nativeai
从零开始:构建支持上下文窗口的AI原生应用实战指南关键词:大语言模型(LLM)、上下文窗口、AI原生应用、token管理、对话状态保持、向量检索、记忆压缩摘要:本文从AI原生应用的核心需求出发,系统讲解支持上下文窗口的应用构建全流程。通过解析上下文窗口的技术本质、关键挑战及解决方案,结合Python代码实战和真实场景案例,帮助开发者掌握从需求分析到落地部署的完整方法。内容涵盖上下文窗口管理策略、t
- 检索增强生成(RAG)技术演进:从论文到工业级应用
AGI大模型与大数据研究院
AI大模型应用开发实战ai
检索增强生成(RAG)技术演进:从论文到工业级应用关键词:RAG、检索增强生成、大语言模型、知识检索、工业应用、技术演进、AI系统架构摘要:本文深入探讨检索增强生成(RAG)技术从学术研究到工业应用的完整演进历程。我们将从基础概念出发,逐步解析RAG的核心原理、架构设计、实现细节和优化策略,并通过实际案例展示如何构建高效可靠的工业级RAG系统。文章还将分析当前技术挑战和未来发展方向,为读者提供全面
- 深入剖析开源AI阅读器项目Saga Reader基于大模型的文本转换与富文本渲染优化方案
魑魅丶小鬼
人工智能
引言AI阅读器作为一种新型的内容消费工具,正在改变人们获取和处理信息的方式。本文将介绍SagaReader项目中如何利用大型语言模型(LLM)进行网页内容抓取、智能优化和富文本渲染,特别是如何通过精心设计的提示词(prompt)引导LLM生成样式丰富的HTML内容,提升用户阅读体验。关于SagaReader基于Tauri开发的著名开源AI驱动的智库式阅读器(前端部分使用Web框架),能根据用户指定
- 实操 SpringBoot+MCP!
清风孤客
springboot后端java人工智能
引言随着人工智能的飞速发展,大语言模型(LLM)正在革命性地重塑用户与软件的交互范式。想象一下这样的场景:用户无需钻研复杂的API文档或者在繁琐的表单间来回切换,只需通过自然语言直接与系统对话——“帮我查找所有2023年出版的图书”、“创建一个新用户叫张三,邮箱是
[email protected]”。这种直观、流畅的交互方式不仅能显著降低新用户的学习曲线,更能大幅削减B端系统的培训成本和实施
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag