- 嵌入式人工智能应用-第四章 逻辑回归 8
数贾电子科技
嵌入式人工智能应用人工智能逻辑回归算法
逻辑回归1逻辑回归介绍1.1背景介绍1.2原理1.2.1预测函数1.2.2判定边界1.2.3损失函数1,2,4梯度下降函数1.2.5分类拓展1.2.6正则化2实验代码3实验结果说明1逻辑回归介绍1.1背景介绍逻辑回归的过程可以概括为:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。Logistic回归虽然名字里带“回归”,但是
- 蓝桥杯学习大纲
ん贤
蓝桥杯算法数据结构
(致酷德与热爱算法、编程的小伙伴们)在查阅了相当多的资料后,发现没有那篇博客、文章很符合我们备战蓝桥杯的学习路径。所以,干脆自己整理一篇,欢迎大家补充!一、蓝桥必备高频考点我们以此为重点学习方向:1.基础算法枚举模拟贪心递归分治构造前缀和差分2.搜索与排序线性搜索二分法BFSDFS回溯剪枝深搜优化记忆化搜索位运算冒泡排序归并排序快速排序桶排序3.动态规划编辑距离最长不重复子串整数背包矩阵连乘最长公
- 【Python 语法】heapq 模块
一杯水果茶!
python
堆的应用场景主要功能示例:使用`heapq`实现优先队列heapq是Python标准库中用于实现堆队列(heapqueue)算法的模块。堆队列是一个基于堆(heap)数据结构的优先队列,它能在O(logn)时间内执行插入、删除最小元素等操作。Python中的heapq模块实现的是一个最小堆(min-heap),即堆顶元素是堆中的最小元素。堆的应用场景优先队列:heapq可以用来实现优先队列,按优先
- 《DeepSeek从入门到精通》下载
疯狂吧小飞牛
deepseek深度学习自然语言处理人工智能
下载地址:《DeepSeek从入门到精通》下载–无敌牛DeepSeek:从入门到精通@新媒沈阳团队:余梦珑博士后清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- 在CentOS 7下使用sl命令跑小火车动图效果
ms72wx
centoslinux运维
在CentOS7下使用sl命令跑小火车动图效果前言一、`sl`命令简介介绍主要特点:二、环境准备三、安装`sl`命令方法一:通过EPEL仓库安装方法二:通过源码编译安装四、使用`sl`命令1.基本用法2.常用选项3.结合其他命令五、扩展玩法1.自定义火车动画2.结合`cowsay`命令六、总结前言在Linux运维工作中,命令行终端是我们最常用的工具之一。虽然终端主要用于执行命令和管理系统,但偶尔也
- 小型字符级语言模型的改进方向和策略
搏博
语言模型人工智能自然语言处理python深度学习
小型字符级语言模型的改进方向和策略一、回顾小型字符级语言模型的处理流程前文我们已经从零开始构建了一个小型字符级语言模型,那么如何改进和完善我们的模型呢?有哪些改进的方向?我们先回顾一下模型的流程:图1小型字符级语言模型的处理流程(1)核心模块交互过程:嵌入层↔位置编码→解码器堆栈→输出投影。(2)训练优化设计:增加自动恢复训练进度的检查点管理;增加block_size校验、保存间隔控制等条件判断。
- NVIDIA B200:高性能 AI 计算的未来
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能nvidiab200
简介对于一直关注人工智能和机器学习快速发展的人来说,新硬件的发布总是备受期待。每一代新处理器和加速器都有可能极大地改变我们开发和部署大规模机器学习模型的方式。NVIDIA长期处于人工智能硬件开发的最前沿,它再次凭借由Blackwell架构驱动的B200提高了标准。最近的MLPerf基准测试提供了B200的首批可靠数据,结果非常出色。在Llama270B型号上运行推理时,B200每秒可处理11,26
- Java部署机器学习模型:方案二(基于DJL)
iiilloi
机器学习springspringboot
DJL(DeepJavaLibrary)是由亚马逊公司开发的一款开源的深度学习框架,它旨在为Java开发人员提供一个简单而强大的API,使得在Java中使用深度学习变得更加容易。DJL有以下几个方面优势:支持多个底层引擎DJL支持多个底层引擎,包括MXNet、TensorFlow和PyTorch等。这使得DJL可以在多个平台上使用,包括Java、Android、iOS和RaspberryPi等。易
- ECharts漏斗图的使用详解
匹马夕阳
Canvas技术集锦echartsjavascript前端
漏斗图(FunnelChart)是一种常用的图表类型,尤其适用于展示数据流转的过程或转化率(如销售漏斗、营销活动转化等)。ECharts提供了丰富的漏斗图配置选项,允许我们清晰地展现各个阶段之间的转化情况。1.漏斗图的基本概念漏斗图通常由多个层级的矩形条组成,每一层代表数据流程的一个阶段,且条的宽度通常表示数量的多少。在漏斗的顶部,宽度最大,表示进入的数量;随着数据的逐层流转,宽度逐渐减小,表示流
- 【MATLAB例程】虚拟长基线校正INS,代码实现
MATLAB卡尔曼
matlab开发语言
实现水下航行器(AUV)的惯性导航(SINS)与虚拟长基线(VLBL)融合校正,抑制导航误差累积。文章目录惯性导航核心算法误差模型改进运行结果:代码代码总结核心功能技术亮点应用场景结果验证扩展建议代码依赖与运行创新点总结惯性导航核心算法采用四元数法进行姿态更新(如搜索结果3所述),解决大角度旋转问题实现速度/位置力学编排(参考搜索结果14的机械编排流程)虚拟长基线校正:模拟4个海底信标的测距数据(
- 微软量子计算“天使梦”破碎,扬言的巨大胜利终究是一个“错误”
量子客
新闻资讯量子计算量子计算机微软拓扑材料拓扑量子计算
研究人员在2018年的一篇论文[1]中说,他们发现了难以捉摸的理论粒子的证据,但是现在进一步的研究表明,情况并非如此,事与愿违。2018年3月,荷兰物理学家、微软员工LeoKouwenhoven发表了引人注目的文章,新的成果提供了“证据”,证明他观察到了一种称为马约拉纳费米子(MajoranaFermion)的“天使”粒子。图1|论文(来源:Nature)1.独家量子梦微软为此,倾尽全力,独家开展
- 三大平台云数据库生态服务对决
title:三大平台云数据库生态服务对决date:2025/2/21updated:2025/2/21author:cmdragonexcerpt:包含自动分片算法实现、跨云迁移工具链开发、智能索引推荐系统构建等核心内容,提供成本优化计算模型、灾备演练方案设计、性能调优路线图等完整解决方案。categories:前端开发tags:云数据库弹性扩展多云架构数据库即服务自动运维全球部署成本优化扫描二维
- 前端面试题---虚拟dom更新原理
*星之卡比*
前端前端vue.js
vue的生命周期里有"挂载"这个阶段这个阶段里,vue实例已经把准备好的组件挂载到页面,模版被编译成虚拟DOM,最终渲染到实际的dom中Vue虚拟DOM更新原理1数据变化:当组件数据变化时,Vue会重新生成虚拟DOM。2Diff算法:Vue比较新旧虚拟DOM,找到差异。3生成补丁:根据差异生成补丁(需要更新的DOM操作)。4应用补丁:将补丁应用到真实DOM,更新视图。5异步更新:Vue将更新操作异
- Vue 3最新组件解析与实践指南:提升开发效率的利器
Aic山鱼
vue.js前端javascript
目录引言一、Vue3核心组件特性解析1.CompositionAPI与组件逻辑复用2.内置组件与生命周期优化3.新一代UI组件库推荐二、高级组件开发技巧1.插件化架构设计2.跨层级组件通信三、性能优化实战1.惰性计算与缓存策略2.虚拟滚动与列表优化3.TreeShaking与按需引入四、总结作者:Aic山鱼|2025年2月17日作者推荐:"近期我偶然邂逅了一个极为出色的人工智能学习平台,它不仅内容
- 输入搜索、分组展示选项、下拉选取,el-select 实现:即输入关键字检索,返回分组选项,选取跳转到相应内容页 —— VUE项目-全局模糊检索
菲力蒲LY
前端javascriptvueel-select
【效果图】:分组展示选项【去界面操作感受一下】—>便捷简洁的企业官网【录制效果视频展示】:菜单栏-快速检索1【流程】:(1)读取目标数据,如果是多个,需要多次读取;(2)对数据进行分组,放入特定分组数据结构;(3)各分组,做相应设置;(4)数据组装到el-select控件;(5)点击选项,跳转到相应位置。现将关键代码及结构附于下方:1.分组数据结构示例:(1)标准结构示例:groupSelectO
- 机器学习的模型类型(Model Types)
路野yue
人工智能机器学习
1.传统机器学习模型线性模型(LinearModels):线性回归(LinearRegression):用于回归任务,拟合线性关系。逻辑回归(LogisticRegression):用于分类任务,输出概率值。岭回归(RidgeRegression)和Lasso回归(LassoRegression):带正则化的线性回归。树模型(Tree-basedModels):决策树(DecisionTree):
- HarmonyOS Next文档扫描技术与实践
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中的文档扫描技术,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、文档扫描技术原理与功能特点(一)技术原理详细讲解在HarmonyOSNext的文档扫描世界里,其技术原理犹如一场精心雕琢的艺术创作。首先是图
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 机器学习_19 集成学习知识点总结
数据媛
机器学习集成学习人工智能pythonscikit-learnnumpyscipy
集成学习(EnsembleLearning)是一种强大的机器学习范式,通过组合多个模型的预测结果来提高整体性能和泛化能力。它在分类、回归和特征选择等任务中表现出色,广泛应用于各种实际问题。今天,我们就来深入探讨集成学习的原理、实现和应用。一、集成学习的基本概念1.1集成学习的定义集成学习通过组合多个学习器(通常称为“弱学习器”)的预测结果,构建一个更强的模型(“强学习器”)。其核心思想是利用多个模
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- 深度学习归一化与正则化
鱼儿也有烦恼
深度学习深度学习
文章目录深度学习归一化与正则化1.归一化(Normalization)2.正则化(Regularization)深度学习归一化与正则化1.归一化(Normalization)定义:归一化是指通过某种算法将输入数据或神经网络层的激活值处理后限制在我们需要的特定范围内。它的目的是为了方便后续的数据处理,并加快程序的收敛速度。归一化的主要作用是统一样本的统计分布。在0到1之间的归一化代表的是概率分布,而
- 云上玩转DeepSeek系列之三:PAI-RAG集成联网搜索,构建企业级智能助手
阿里云大数据AI技术
deepseekPAI阿里云人工智能RAG
正文DeepSeek系列模型以卓越性能在全球范围内备受瞩目,在各类评测中表现优异,推理性能接近甚至超越国际顶尖闭源模型。2025年2月以来,阿里云人工智能平台PAI持续推出围绕DeepSeek系列模型的最佳实践,包含快速部署、应用搭建、蒸馏、微调等各个环节,让企业和个人开发者可以在云上高效、灵活地部署和探索DeepSeek-R1、DeepSeek-V3等模型。本文将为您带来“基于PAI-RAG构建
- 机器学习—逻辑回归
60岁的程序猿
1024程序员节机器学习逻辑回归人工智能算法
本内容是博主自学机器学习总结的。由于博主水平有限,内容可能有些许错误。如有错误,请发在评论区。目录1、基础概念1.1、什么是逻辑回归1.2、逻辑回归与线性回归的区别1.3应用场景2、逻辑回归模型2.1、模型定义2.2、Sigmoid函数2.3、决策边界2.4、概率解释3、模型训练3.1、损失函数3.2、梯度下降法3.3、牛顿法3.4、拟牛顿法3.4、正则化3.5、总结4、多分类问题4.1、一对多(
- Linux升级openssl解决方案
爱编程的喵喵
Linux解决方案linuxopenssl升级openssl解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Linux升级openssl解决方案
- Cavishape: Python编程与图像处理的艺术之作
laforet
本文还有配套的精品资源,点击获取简介:Cavishape可能是一个以Python编写的创新软件项目,它的名称和标签暗示着该项目具有非传统的设计和创新的特性。项目的主要元素可能与图形用户界面设计和图像处理相关,特别是以鱼形为设计元素。它可能采用了面向对象编程方法,图形界面可能利用了Python的GUI库,图像处理方面可能涉及特定的图形生成算法。项目可能使用了版本控制,如Git,并强调测试与调试的重要
- VisionMaster4.4 新增功能 体验感受
虚假程序设计
computervision
4.24.34.4可以同时安装通过版本切换工具切换切换需要花费5分钟整整5分钟。4.4只支持6200621072007210加密狗不管是远程的和本地的而6100只支持4.3以及以下版本4.4体验感受:图像源可以订阅文件夹,[文件夹图像改变的情况下]实时更新文件.流程图拖拉拽增加注释功能可以添加注释;输出图像:FTP增加校验连接状态按钮4.4美中不足的是FTP功能不能正常使用而4.3的FTP可以使用
- 【机器学习】向量化使得简单线性回归性能提升
若兰幽竹
机器学习机器学习线性回归人工智能
向量化使得简单线性回归性能提升一、摘要二、向量化运算概述三、向量化运算在简单线性回归中的应用四、性能测试与结果分析一、摘要本文主要讲述了向量化运算在简单线性回归算法中的应用。通过回顾传统for循环方式实现的简单线性回归算法,介绍了如何通过最小二乘法计算a的值。然而,这种方式在计算性能上存在效率较低的问题。为了提高性能,视频引入了向量化运算的概念,即将计算过程从循环方式转变为向量之间的计算。通过向量
- openssl中dh算法实现
sjtu_chenchen
加密技术c++openssldh
Openssl的DH实现在crypt/dh目录中,各个源码如下:(1)dh.h定义了DH密钥方法数据结构以及各种函数。(2)dh_asn1.cDH密钥参数的DER编解码实现。(3)dh_lib.c实现了通用的DH函数,设计层面的。(4)dh_gen.c实现了生成DH密钥参数。(5)dh_key.c实现openssl提供的默认的DH_METHOD,实现了根据密钥参数生成DH公私钥,以及根据DH公钥(
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,Django@Python2.x 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f