- 关系型数据库的技术思路
编程之升级打怪
数据库
一、网络协议需要根据TCP协议设计一个客户端和服务器之间的命令响应协议。1、服务端回复声明2、客户端发送登录包3、服务端返回登录结果4、登录成功后进入命令阶段,否则退出。二、每个连接用一个线程服务器为每个客户端连接开启一个线程。三、需要文件的随机读写需要方便的跳转到存储文件的指针。四、数据结构用B+树1、非叶子节点存放很多个关键字每个关键字递增排列。2、叶子节点存放关键字对应记录的文件存放指针。五
- python 推荐算法库_[译] 详解个性化推荐五大最常用算法
weixin_39612733
python推荐算法库
允中若朴编译自Stats&Bots量子位出品|公众号QbitAI推荐系统,是当今互联网背后的无名英雄。我们在某宝首页看见的商品,某条上读到的新闻,甚至在各种地方看见的广告,都有赖于它。昨天,一个名为Stats&Bots的博客详解了构建推荐系统的五种方法。量子位编译如下:现在,许多公司都在用大数据来向用户进行相关推荐,驱动收入增长。推荐算法有很多种,数据科学家需要根据业务的限制和要求选择最好的算法。
- 删除数据库表中重复数据的方法
master_chenchengg
能力提升面试宝典技术IT信息化
删除数据库表中重复数据的方法数据库中重复数据的识别与分析手动删除重复记录的基本步骤利用SQL高级功能高效清理重复数据自动化脚本实现大规模重复数据清除数据库设计阶段预防重复数据策略使用数据库内置工具或插件辅助去重工作处理过程中数据完整性和一致性维护针对特定场景下的重复数据处理案例解析数据库中重复数据的识别与分析重复数据指的是在数据库表中出现多次相同的数据记录。这种情况不仅浪费存储空间,还可能导致数据
- Open WebUI:开源AI交互平台的全面解析
目录核心功能安装指南Linux/macOSWindows进阶特性管理与安全生态系统集成持续更新核心功能️交互体验类ChatGPT界面:提供直观的聊天界面设计跨平台响应式设计:完美适配桌面/移动端即时响应:毫秒级响应速度富文本支持:代码语法高亮完整Markdown/LaTeX渲染语音输入支持(支持静音自动提交)模型管理多模型切换:支持不同LLM模型即时切换GGUF模型创建:支持直接上传/从Huggi
- Python实现个性化推荐二
Ninina1992
python人工智能开发工具
基于内容的推荐引擎是怎么工作的基于内容的推荐系统,正如你的朋友和同事预期的那样,会考虑商品的实际属性,比如商品描述,商品名,价格等等。如果你以前从没接触过推荐系统,然后现在有人拿枪指着你的头,强迫你在三十秒之内描述出来,你可能会描述这样一个基于内容的系统:呃,呃,我可能会给你看一大堆来自同一个厂家,并且拥有类似的说明的产品。你正在利用商品本身的属性来推荐类似的商品。这样做非常合理,因为这就是我们在
- 实战:基于Pandas的房价数据分析全流程深度解析(附高阶技巧与数学推导)(十二)
WHCIS
Pandaspandas数据分析python
一、项目深度解析框架1.1分析维度全景图数据加载元数据分析数据清洗特征工程多维分析模型准备自动化报告1.2高阶分析工具链数据清洗:Missingno高级可视化、Optuna自动超参优化特征工程:TsFresh时序特征生成、FeatureTools自动化特征衍生可视化:Plotly动态交互、Altair声明式语法报告:JupyterNotebook魔法命令、Voila仪表板二、数据加载的工程级优化2
- MySQL × 向量数据库:大模型时代的黄金组合实战指南
mysql人工智能
一、大模型时代的数据存储革命1.1传统架构的局限性--传统商品表结构CREATETABLEproducts(idINTPRIMARYKEY,titleVARCHAR(255),descriptionTEXT,category_idINT);--典型关键词搜索SELECT*FROMproductsWHEREtitleLIKE'%智能手机%'ORdescriptionLIKE'%旗舰机型%';痛点分析
- 大模型时代的软件架构设计
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
引言当今世界,人工智能(AI)技术正以惊人的速度发展,其中大模型(LargeModels)的崛起尤为引人注目。大模型,也被称为深度学习模型,因其庞大的参数规模和强大的数据处理能力,成为推动AI技术前进的重要力量。随着大模型的广泛应用,软件架构设计面临着前所未有的挑战和机遇。大模型时代的软件架构设计,不仅需要解决传统软件架构所面对的问题,如性能、可靠性和可扩展性等,还需要应对大模型带来的新挑战,如计
- 大模型技术在电商平台商品评价分析中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型技术在电商平台商品评价分析中的应用关键词:大模型技术电商平台商品评价分析情感分析商品推荐Transformer模型BERT模型摘要:本文详细探讨了大模型技术在电商平台商品评价分析中的应用。首先,我们介绍了大模型技术的基本概念、发展背景及其在商品评价分析中的应用前景。随后,我们阐述了电商平台商品评价分析的基本概念、挑战及目标指标。接着,本文重点分析了大模型技术在情感分析和商品推荐中的具体应用,
- Android中的四大组件及其生命周期
Java资深爱好者
android
Android中的四大组件分别是Activity、Service、ContentProvider和BroadcastReceiver,每个组件都有其特定的生命周期。以下是这些组件及其生命周期的详细介绍:1.Activity简介:Activity是用户操作的可视化界面,为用户提供了一个完成操作指令的窗口。一个Activity通常就是一个单独的屏幕(窗口),Activity之间通过Intent进行通信
- 大语言模型LLM原理篇_图解大模型从用户输入prompt到llm输出答案的流程原理
喝不喝奶茶丫
prompt人工智能自然语言处理语言模型javascript大模型LLM
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 开发基于提示工程的大语言模型(LLM)应用——学习笔记
ricky_fan
人工智能python
本文是学习笔记。学习通过提示工程与大语言模型进行程序化的交互。将从最基本的开始,比如使用哪些模型,以及如何向它们发送提示词并查看响应。将逐步构建更复杂的提示词,并学习LangChain为我们提供的、用于与大语言模型交互的丰富工具。Langchain链核心是运行时(runnable),它们能以多种方式组合的为工作流。如何创建LangChain链 fromlangchain_nvidia_ai_end
- 项目经验之LZO压缩?思维导图 代码示例(java 架构)
用心去追梦
java架构开发语言
LZO(LightweightZip/Unzip)是一种高效的压缩算法,它以快速解压缩著称,适用于需要频繁读取和处理的数据。在Hadoop生态系统中,使用LZO压缩可以显著减少存储空间,并且由于其快速的解压速度,对于大规模数据处理任务来说是非常有利的。以下是关于LZO压缩的项目经验总结、思维导图描述以及Java代码示例。项目经验之LZO压缩LZO的优势快速解压:LZO算法设计时优先考虑了解压速度,
- tofixed和math.round什么区别
hdufu123
前端javascript开发语言
1、floor返回不大于的最大整数(向下取整)2、round则是4舍5入的计算,入的时候是到大于它的整数(当-1.5时可见,四舍五入后得到的结果不是我们期待的,解决办法是先对他取绝对值,然后在用round方法)round方法,它表示“四舍五入”,算法为Math.floor(x+0.5),即将原来的数字加上0.5后再向下取整,所以,Math.round(11.5)的结果为12,Math.round(
- 计算机视觉与机器学习之文档解析与向量化技术加速多模态大模型训练与应用——文件向量化大模型!
知世不是芝士
计算机视觉人工智能大语言模型ai大模型多模态大模型机器学习LLM
目录前言1、TextIn文档解析技术1.1、文档解析技术1.2、目前存在的问题1.2.1、不规则的文档信息示例1.3、合合信息的文档解析1.3.1、合合信息的TextIn文档解析技术架构1.3.2、版面分析关键技术Layout-engine1.3.3、文档树提取关键技术Catalog-engine1.3.4、双栏1.3.5、非对称双栏1.3.6、双栏+表格1.3.7、无线表格1.3.8、合并单元格
- 《AI大模型开发笔记》——提示词工程
Richard Chijq
AI大模型开发笔记前端服务器运维
1.什么是提示工程提示工程(PromptEngineering),也被称为上下文学习,是指通过精心设计的提示技术来引导LLM行为,而无需更改模型权重。其目标是使模型输出与给定任务的人类意图一致。提示工程帮助用户控制语言模型输出,生成适合的特定需求。提示调整提供了对模型行为的直观控制,但对提示的确切措辞和设计敏感,因此需要精心制定的准则以实现期望的结果。2.提示工程的原则2.1.给模型清晰指令:
- Android App开发之Jetpack架构,Android大厂高频面试题解析
m0_66144992
程序员架构移动开发android
因此,Jetpack来了!Jetpack是什么?===========Jetpack是Google推出的一套系列组件集。Jetpack的出现以及Google标准化开发模式的确立,代表了Android原生开发的未来方向,意味着Android发展已经逐渐成熟。为什么要学?======在开发世界,永远是技术至上,一门新技术的盛行总是有原因的,要么比老框架性能提升不少,要不更加易用等等。作为开发者,更是要
- 计算机复试面试题总结
m0_67400972
面试学习路线阿里巴巴android前端后端
时隔两年,重新完善一下以前写的东西:更新!!!!1.c++,408,设计模式,编程技巧,开源框架(适合cpp后端开发)2.数据结构与算法面试题3.c++与STL面试题4.计算机网络面试题面试问题之编程语言1。C++的特点是什么?封装,继承,多态。支持面向对象和面向过程的开发。2.C++的异常处理机制?抛出异常和捕捉异常进行处理。(实际开发)3.c和c++,java的区别c是纯过程,c++是对象加过
- ⭐算法OJ⭐矩阵的相关操作【深度优先搜索 DFS + 回溯】(C++ 实现)Unique Paths 系列
Vitalia
C/C++算法OJ算法矩阵深度优先
980.UniquePathsIIIYouaregivenanmxnintegerarraygridwheregrid[i][j]couldbe:1representingthestartingsquare.Thereisexactlyonestartingsquare.2representingtheendingsquare.Thereisexactlyoneendingsquare.0repr
- [论文笔记] LLM大模型剪枝篇——2、剪枝总体方案
心心喵
论文笔记剪枝算法机器学习
https://github.com/sramshetty/ShortGPT/tree/mainMy剪枝方案(暂定):剪枝目标:1.5B—>100~600M剪枝方法:层粒度剪枝1、基于BI分数选择P%的冗余层,P=60~802、对前N%冗余层,直接删除fulllayer。N=20(N:剪枝崩溃临界点,LLaMA2在45%,Mistral-7B在35%,Qwen在20%,Phi-2在25%)对后(P
- C#集合类(数据结构)
FreedomRoad~
C#.NET
一、选择数据结构1)线性容器List数组/Stack/Dequeue按需求模型选择即可,LinkedList是双向链表增删修改快.需要有序数组SortList线性排序容器都可以;如果既需要查找快又需要频繁修改那么可以用List记录索引,用LinkedList存储。2)二叉树类型容器SortedDictionary可以提供二叉树类型插入删除查找都比较折中的键值对容器。SortedSet一个集合值类型
- alter日志报WARNING: too many parse errors
weixin_30480075
数据库版本:12.2.0操作系统版本:RHEL7.2最近观察到一个数据库alert日志老是报硬解析太多错误,且对应的sql语句都是查看数据字典表:2017-06-16T08:46:46.417468+08:00TTEST(4):WARNING:toomanyparseerrors,count=100SQLhash=0x03b29074TTEST(4):PARSEERROR:ospid=3504,e
- 数据库必知必会系列:数据库分片与分布式事务
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
文章目录1.背景介绍分库分表分片集群分布式事务数据迁移2.核心概念与联系主从复制活动复制CAP原则BASE理论3.核心算法原理和具体操作步骤以及数学模型公式详细讲解分库分表水平分表垂直分库分片集群垂直拆分水平切分垂直切分水平拆分根据主键范围根据业务字段划分分布式事务两阶段提交协议三阶段提交协议可靠消息最终一致性ACID四要素4.具体代码实例和详细解释说明MyCat配置文件server.xml文件s
- GitHub每日最火火火项目(2.28)
FutureUniant
github日推github人工智能计算机视觉音视频ai
olmocr项目介绍:olmocr是由allenai开发的一款用于将PDF文件线性化,以适配大语言模型(LLM)数据集和训练的工具包。在大语言模型的训练过程中,数据的格式和预处理极为关键。PDF文件作为常见的数据来源,其内部复杂的排版和结构使得其中的文本信息难以直接被模型有效利用。olmocr通过一系列的技术和算法,对PDF文件进行处理,将其中的文本内容按照合适的顺序和格式提取出来,转化为线性的、
- DP算法问题写这些题就够了 198. 打家劫舍II 【第二题】
迪小莫学AI
DP算法入门刷题题单题解算法
213.打家劫舍II题目描述你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,今晚能够偷窃到的最高金额。示例示例1:输入:nums=[2,
- 深入理解PyTorch模型训练所需的数据集
mosquito_lover1
pytorch人工智能python
在PyTorch中,模型训练的核心是数据集(Dataset)。数据集是模型训练的基础,它提供了模型训练所需的所有输入数据和对应的标签。理解数据集的结构、加载方式以及如何预处理数据是成功训练模型的关键。以下是对PyTorch模型训练所需数据集的深入解析:1.数据集的基本概念数据集:数据集是模型训练的基础,通常由输入数据(如图像、文本、音频等)和对应的标签(目标值)组成。样本(Sample):数据集中
- Amazon SageMaker 批量转换中的 JSON 处理技巧
t0_54coder
json个人开发
在使用AmazonSageMaker进行机器学习模型的批量转换时,我们经常会遇到一些配置和数据格式的问题。今天我们来讨论一个常见的困扰:如何处理在MultiRecord批量策略下JSON数据的解析错误。背景介绍AmazonSageMaker提供了强大的批量转换功能,允许我们对大量数据进行推理。这在处理大规模数据集时非常有用。然而,当我们尝试将批量策略从SingleRecord切换到MultiRec
- GitHub 星标10W+的大模型书籍:《轻松入门大模型应用开发:GPT-4 和 ChatGPT 实战指南》,25年一书通关LLM大模型
程序员丸子
人工智能语言模型自然语言处理大模型AILLM大模型应用
当下大模型这么火,还有人很多人想加入进来,但是不知道怎么去学习,那么今天我就给大家分享一本适合所有人的一本神仙级入门大模型的书籍,小白也能学会。它是由奥利维耶·卡埃朗和玛丽-艾丽斯·布莱特合著的一本《大模型应用开发极简入门:基于GPT-4和ChatGPT》,为初学者提供一份清晰、全面的“可用知识”,帮助读者快速了解GPT-4和ChatGPT的工作原理及优势。此书使用流行的Python编程语言来构建
- 编程小白冲Kaggle每日打卡(4)--kaggle学堂:<编程简介>列表
AZmax01
编程小白冲Kaggle每日打卡机器学习人工智能python
Kaggle课程官网链接:IntrotoLists本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。IntrotoLists整理您的数据,以便您能够高效地使用它。Introduction在进行数据科学研究时,您需要一种组织数据的方法,以便高效地使用它。Python有许多数据结构可用于保存数据,如列表、集合、字典和元组。在本教程中,您将学习如何使用Python列表。Motivation在“花
- 如何使用Anyscale平台运行、微调和扩展大语言模型(LLMs)
eahba
语言模型人工智能自然语言处理python
Anyscale是一个功能强大的平台,主要用于运行、微调和扩展大语言模型(LLMs),并且通过生产就绪的API提供成本效益的调用服务。AnyscaleEndpoints提供了多种开源模型,适合不同的应用场景。技术背景介绍在处理大规模的自然语言处理任务时,我们常常需要一个可靠且经济高效的解决方案来运行和管理LLMs。Anyscale提供了一个强大的接口,能够简化这一过程。结合LangChain,我们
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包.
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email: ken.wug@gmail.com
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2.
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多