原始GAN对抗网络

参考

  • GAN 在NLP中应用:https://www.jianshu.com/p/54afd578b8a3
  • GAN 原理浅析:http://www.sohu.com/a/121189842_465975 https://www.jianshu.com/p/edbcf96ca3c9
  • GAN 论文整理:https://www.jianshu.com/p/2acb804dd811
  • 机器之心:GAN论文以及GitHub地址
  • 生成对抗网络(Generative Adversarial Networks)
    https://arxiv.org/abs/1406.2661)
    https://github.com/uclaacmai/Generative-Adversarial-Network-Tutorial

  • DCGAN:
    https://arxiv.org/abs/1511.06434
    Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
    TL; DR:一系列改进以前 DCGAN 的技术。比如,这个改进的基准允许生成更好的高分辨率图像。

  • Wasserstein GAN
    https://arxiv.org/abs/1701.07875

简单GAN实现

  • 利用GAN生成图片,曲线(pytorch), minst(tensorflow)。

pytorch(莫凡大神课程)

# -*- coding: utf-8 -*-
# @Time    : 2018/10/14 22:42
# @Author  : kean
# @Email   : 
# @File    : gan_morvan.py
# @Software: PyCharm


"""
View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
torch: 0.4
numpy
matplotlib
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible
# np.random.seed(1)

# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001           # learning rate for generator
LR_D = 0.0001           # learning rate for discriminator
N_IDEAS = 5             # think of this as number of ideas for generating an art work (Generator)
ART_COMPONENTS = 15     # it could be total point G can draw in the canvas
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])

# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()


def artist_works():     # painting from the famous artist (real target)
    a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
    paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
    paintings = torch.from_numpy(paintings).float()
    return paintings

G = nn.Sequential(                      # Generator
    nn.Linear(N_IDEAS, 128),            # random ideas (could from normal distribution)
    nn.ReLU(),
    nn.Linear(128, ART_COMPONENTS),     # making a painting from these random ideas
)

D = nn.Sequential(                      # Discriminator
    nn.Linear(ART_COMPONENTS, 128),     # receive art work either from the famous artist or a newbie like G
    nn.ReLU(),
    nn.Linear(128, 1),
    nn.Sigmoid(),                       # tell the probability that the art work is made by artist
)

opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)

plt.ion()   # something about continuous plotting

for step in range(10000):
    artist_paintings = artist_works()           # real painting from artist
    G_ideas = torch.randn(BATCH_SIZE, N_IDEAS)  # random ideas
    G_paintings = G(G_ideas)                    # fake painting from G (random ideas)

    prob_artist0 = D(artist_paintings)          # D try to increase this prob
    prob_artist1 = D(G_paintings)               # D try to reduce this prob

    D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
    G_loss = torch.mean(torch.log(1. - prob_artist1))

    opt_D.zero_grad()
    D_loss.backward(retain_graph=True)      # reusing computational graph
    opt_D.step()

    opt_G.zero_grad()
    G_loss.backward()
    opt_G.step()

    if step % 50 == 0:  # plotting
        plt.cla()
        plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting',)
        plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
        plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
        plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size': 13})
        plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
        plt.ylim((0, 3))
        plt.legend(loc='upper right', fontsize=10)
        plt.draw()
        plt.pause(0.01)

plt.ioff()
plt.show()

tensorflow(错误之处帮忙指出)

# -*- coding: utf-8 -*-
# @Time    : 2018/10/27 17:18
# @Author  : kean
# @Email   : 
# @File    : simple_gan.py
# @Software: PyCharm

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os

mnist = input_data.read_data_sets("D:/data/minst/", one_hot=True)


class Net:
    def __init__(self):
        # discrininator
        # real input
        self.x_input = tf.placeholder(shape=[None, 784], dtype=tf.float32, name="x_input")
        # input_layer
        self.d_input_weight, self.d_input_bias = self.init(shape=[784, 128], name="d_input")
        # hidden 1
        self.d_h1_weight, self.d_h1_bias = self.init(shape=[128, 1], name="d_h1")  # full connection layer

        # generator
        # fake idea
        self.idea = tf.placeholder(shape=[None, 10], dtype=tf.float32, name="idea")
        self.g_input_weight, self.g_input_bias = self.init(shape=[10, 128], name="g_input")
        self.g_h1_weight, self.g_h1_bias = self.init(shape=[128, 784], name="g_h1")

        # optimazer
        self.fake = self.generator()
        self.d_loss, self.g_loss = self.loss()
        self.d_optimazer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(self.d_loss)
        self.g_optimazer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(self.g_loss)

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        self.sess = sess


    def generator(self):
        g_h1_accept = tf.nn.relu(tf.matmul(self.idea, self.g_input_weight) + self.g_input_bias, name="g_h1_accept")
        # print("g_input_weight", self.g_input_weight)
        # print("g_input_bias", self.g_input_bias)
        # print("g_h1_accept", g_h1_accept)
        fake = tf.nn.sigmoid(tf.matmul(g_h1_accept, self.g_h1_weight) + self.g_h1_bias, name="fake")
        # print("fake", fake)
        return fake

    def disciminator(self, x_input):
        """
        :return: 0-1
        """
        d_h1_accept = tf.nn.relu(tf.matmul(x_input, self.d_input_weight) + self.d_input_bias)
        logits = tf.matmul(d_h1_accept, self.d_h1_weight) + self.d_h1_bias
        scores = tf.nn.sigmoid(logits)
        return scores, logits

    def loss(self):
        real_scores, real_logits = self.disciminator(self.x_input)
        fake_scores, fake_logits = self.disciminator(self.fake)
        # 尽可能区分真伪,real_scores->1,fake_scores->0, optimazer.min
        d_loss = - tf.reduce_mean(tf.math.log(tf.clip_by_value(real_scores, 1e-8, 1)) +
                                  tf.math.log(tf.clip_by_value(1 - fake_scores, 1e-8, 1)), name="d_loss")
        # 尽可能让判别器错误, fake_scores越接近1越好,optimazer.min
        g_loss = - tf.reduce_mean(tf.math.log(tf.clip_by_value(fake_scores, 1e-8, 1)), name="g_loss")
        return d_loss, g_loss

    def train(self, num_show=2000, batch_size=64):
        count = 1
        while True:
            batch, _ = mnist.train.next_batch(batch_size)
            idea = np.random.randn(batch_size, 10)
            _, d_loss = self.sess.run([self.d_optimazer, self.d_loss],
                                      feed_dict={self.x_input: batch, self.idea: idea}
                                      )
            _, g_loss = self.sess.run([self.g_optimazer, self.g_loss],
                                      feed_dict={self.idea: idea}
                                      )
            if count % num_show == 0:
                print("%d loss: (%.5f, %.5f)" % (count, d_loss, g_loss))
                fake = self.sess.run([self.fake], {self.idea: np.random.randn(1, 10)})
                fig = self.plot(fake)
                fig.show()
                plt.pause(1)
                plt.close()
            count += 1




    def init(self, shape, name):
        weight = tf.Variable(initial_value=tf.random_uniform(shape=shape, minval=-1, maxval=1), name=name + "_weight")
        bias = tf.Variable(initial_value=tf.zeros(shape=[1, shape[-1]]), dtype=tf.float32, name=name + "_bias")
        return weight, bias

    def plot(self, samples):
        fig = plt.figure(figsize=(4, 4))
        gs = gridspec.GridSpec(4, 4)
        gs.update(wspace=0.05, hspace=0.05)

        for i, sample in enumerate(samples):
            ax = plt.subplot(gs[i])
            plt.axis('off')
            ax.set_xticklabels([])
            ax.set_yticklabels([])
            ax.set_aspect('equal')
            plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
        return fig



if __name__ == '__main__':
    net = Net()
    net.train(num_show=1000)

你可能感兴趣的:(原始GAN对抗网络)