[论文精读]BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks

论文网址:BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks | IEEE Journals & Magazine | IEEE Xplore

论文代码:GitHub - HennyJie/BrainGB: Officially Accepted to IEEE Transactions on Medical Imaging (TMI, IF: 11.037) - Special Issue on Geometric Deep Learning in Medical Imaging.

BrainGB网站:https://braingb.us

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①At present, there is still a lack of systematic research on brain network analysis(啥是脑网络分析的系统研究?

        ②They proposed Brain Graph Neural Network Benchmark (BrainGB) to construct pipelines and modularize its implementation

2.2. Introduction

        ①The interactions between brain regions are decisive factors of analysing neurology and diseases

        ②Their contributions are: a) establishing a unified framework and evaluation criteria, b) summarizing the reprocessing and building pipeline of fMRI and sMRI, c) setting baselines as node features, message passing mechanisms, attention mechanisms, and pooling strategies

        ③Overall framework:

[论文精读]BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks_第1张图片

motif  n.(文学作品或音乐的)主题;装饰图案;动机;主旨

2.3. Preliminaries

2.3.1. Brain Network Analysis

        ①Brain network dataset is \mathcal{D}=\{\mathcal{G}_{n},y_{n}\}_{n=1}^{N} with N subjects, where \mathcal{G}_{n}=\{\mathcal{V}_{n},\mathcal{E}_{n}\},  y_{n} is the true label, \mathcal{V}_n=\mathcal{V}=\{v_i\}_{i=1}^M denotes M nodes (ROIs), \mathcal{E}_{n} denotes edges. The output of model is prediction \hat{y}_n

        ②Graph kernels and tensor factorization are too shallow to analyse the complicate brain structure

aberration  n.异常行为;反常现象;脱离常规

2.3.2. Graph Neural Networks

        ①There are 3 differences between brain network and other graph: a) brain network is lack of node features, b) weights of connection can be positive or negative, c) ROI is fixed

2.4. Brain Network Dataset Construction

2.4.1. Background: Diverse Modalities of Brain Imaging

        There is a lot of scanning technology: Magnetic-Resonance Imaging (MRI), Electroencephalography (EEG) and Magnetoencephalography (MEG), Positron Emission Tomography (PET), Single-Photon Emission Computed Tomography (SPECT), and X-ray Computed Tomography (CT) etc.

(1)MRI Data

        ①Functional MRI (fMRI) indicates changes in blood oxygen and blood flow and reveals the functional activities

        ②Diffusion-weighted MRI (dMRI) fits brain structure through molecular (usually water) motion trajectories

trajectory  n.轨迹;(射体在空中的)轨道;弹道

(2)Challenges in MRI Preprocessings

        ①There are preprocessing tools like SPM, AFNI and FSL. However, it really takes time to learn them or use them

        ②None of a tool contains all the preprocessing functions of dMRI

        ③The publicity of datasets is also a big problem

        ④For different modalities, they need different methods of preprocessing

2.4.2. Brain Network Construction From Raw Data

(1)Functional Brain Network Construction

        ①Some preprocessing functions in different tools:

[论文精读]BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks_第2张图片

        ②There are partial correlations, mutual information, coherence, Granger causality etc. as the pairwise correlations between ROIs

(2)Structural Brain Network Construction

        ①Some preprocessing functions in different tools:

[论文精读]BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks_第3张图片

2.4.3. Discussions

        The combination of sMRI and fMRI might be more effective than single modality

metabolic  adj.代谢的;新陈代谢的

2.5. GNN Baselines for Brain Network Analysis

2.5.1. Node Feature Construction

        ①Identity: give one hot feature vector for each node

        ②Eigen: similar to PCA...

        ③Degree: a one dimension vector that records the degree of one node

        ④Degree profile:

 \begin{gathered} \boldsymbol{x}_i= [\deg(v_i)\parallel\min\text{ }(\mathcal{D}_i)\parallel\max\text{ }(\mathcal{D}_i) \\ \|\text{mean }(\mathcal{D}_i)\parallel\text{std }(\mathcal{D}_i)] \end{gathered}

        ⑤Connection profile: each row of one node is the original node feature

2.5.2. Message Passing Mechanisms

        ①The node feature h_i^{l} in layer l firstly get message from neighbors through sum operation:

\boldsymbol{m}_i^l=\sum_{j\in\mathcal{N}_i}\boldsymbol{m}_{ij}=\sum_{j\in\mathcal{N}_i}M_l\left(\boldsymbol{h}_i^l,\boldsymbol{h}_j^l,w_{ij}\right)

where \mathcal{N}_{i} represents all the neighbors of node v_iw_{ij} denotes the edge weights between node v_i and v_jM_l denotes the message function

        ②They secondly update with:

h_i^{l+1}=U_l\left(\boldsymbol{h}_i^l,\boldsymbol{m}_i^l\right)

where U_l can be any differentiable function

        ③They \boldsymbol{m}_{ij} might be influenced on:

egde wights Aggregation as in GCN, m_{ij}=\boldsymbol{h}_{j}\cdot w_{ij}, clearly reflects that the value of m_{ij} is related to the edge weight value
bin concat Set T buckets, trying it in [5, 10, 15, 20]. Each bucket possesses its own expression \mathbf{b}_t. Ranking all the edge weights and dividing them into T buckets in ascending order. Then, followed by an MLP: m_{ij}=\mathrm{MLP}(h_{j}\parallel b_{t}). It helps to find the similar connections.
edge weight concat m_{ij}=\mathrm{MLP}(\boldsymbol{h}_{j}\parallel d\cdot w_{ij}), where the value of d is the dimension of node feature. Such scaling extends the impact of edge feature 
node edge concat m_{ij}=\mathrm{MLP}(h_{i}\parallel h_{j}\parallel w_{ij}). It can reduce the over smoothing problem because “从每个中心节点的本地邻居传递的每条消息都使用其上一个时间步长的表示进行强化”(?我没太能理解,这不是两个节点之间的concat吗,和上一步有什么关系?
node concat m_{ij}=\mathrm{MLP}(h_{i}\parallel h_{j})

2.5.3. Attention-Enhanced Message Passing

2.5.4. Pooling Strategies

2.6. Experimental Analysis and Insights

2.6.1. Experimental Settings

(1)Datasets

(2)Baselines

(3)Implementation Details

2.6.2. Performance Report

(1)Node Feature

(2)Message Passing

(3)Attention Enhanced Message Passing

(4)Pooling Strategies

(5)Other Baselines

(6)Insights on Density Levels

2.7. Open Source Benchmark Platform

2.8. Discussion and Extensions

3. BrainGB库/代码

        参见另一篇文章

4. Reference List

Cui H. et al. (2023) 'BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks', IEEE Transactions on Medical Imaging, 42 (2), pp. 493-506. doi" 10.1109/TMI.2022.3218745

你可能感兴趣的:(论文精读,深度学习,人工智能,机器学习,学习,数据库,python)