- 全面触摸屏输入法设计与实现
长野君
本文还有配套的精品资源,点击获取简介:触摸屏输入法是针对触摸设备优化的文字输入方案,包括虚拟键盘、手写、语音识别和手势等多种输入方式。本方案通过提供主程序文件、用户手册、界面截图、示例图、说明文本和音效文件,旨在为用户提供一个完整的、多样的文字输入体验。开发者通过持续优化算法和用户界面,使用户在无物理键盘环境下也能高效准确地进行文字输入。1.触摸屏输入法概述简介在现代信息技术飞速发展的今天,触摸屏
- 配音助手:自媒体神器,内置海量音色的语音,支持多主播配音
阿幸软件杂货间
媒体
软件介绍内置文字转语音,提供多个主播音色,男声、女声、小孩、方言。支持的场景也是比较多,比如:广告促销、有声读物、广播配音、影视配音、Ai配音等。这个软件是免费的,只不过需要通过手机号码登录就可以使用全部功能了。软件下载夸克下载
- rocketmq的重试队列和死信队列
还不够
MQ
原文:https://www.jianshu.com/p/1281f7fee69c消费端,一直不回传消费的结果。rocketmq认为消息没收到,consumer下一次拉取,broker依然会发送该消息。所以,任何异常都要捕获返回ConsumeConcurrentlyStatus.RECONSUME_LATERrocketmq会放到重试队列。这个重试TOPIC的名字是%RETRY%+consumer
- NGS测序基础梳理01-文库构建(Library Preparation)
qq_21478261
#生物信息生物学
本文介绍Illumina测序平台文库构建(LibraryPreparation)步骤,文库结构。写作时间:2020.05。推荐阅读:10W字《Python可视化教程1.0》来了!一份由公众号「pythonic生物人」精心制作的PythonMatplotlib可视化系统教程,105页PDFhttps://mp.weixin.qq.com/s/QaSmucuVsS_DR-klfpE3-Q10W字《Rg
- NGS测序基础梳理02-簇生成(Cluster Generation)及flow cell介绍
qq_21478261
#生物信息生物信息学
本文图解Illumina测序平台,flowcell表面簇生成(ClusterGeneration)过程。写作时间:2020,有问题可留言或者我的公众号。本文将了解到什么?1flowcell2簇生成为何要进行簇生成?簇生成步骤1)文库与flowcell表面P5杂交与互补链合成2)双链变性3)桥式PCR扩增4)反链切除5)DNA链3'封闭参考资料:1flowcell为何要先介绍flowcell?因为簇
- 12 个强大的 DeepSeek AI 提示将彻底改变您的日常生活
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
内容写作的最佳提示让我们从写作开始吧。无论您是博主、学生还是社交媒体创作者,这些提示都将帮助您创作出精彩的内容。提示1:“扮演专业文案撰稿人,为[产品/服务]撰写引人注目的广告文案。文案应引人入胜、具有说服力,且字数不得超过100个字。”这使得ChatGPT的响应结构就像真实的广告文案一样。提示2:“以更具吸引力和说服力的方式重写此段落,同时保持含义不变:[插入文本]。”推荐文章《Neo4j上使用
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- Llama-Omni会说话的人工智能“语音到语音LLM” 利用低延迟、高质量语音转语音 AI 彻底改变对话方式(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程llama人工智能nvidiallm
介绍“单靠技术是不够的——技术与文科、人文学科的结合,才能产生让我们心花怒放的成果。”——史蒂夫·乔布斯近年来,人机交互领域发生了重大变化,尤其是随着ChatGPT、GPT-4等大型语言模型(LLM)的出现。虽然这些模型主要基于文本,但人们对语音交互的兴趣日益浓厚,以使人机对话更加无缝和自然。然而,实现语音交互而不受语音转文本处理中常见的延迟和错误的影响仍然是一个挑战。关键字:Llama-Omni
- php加密的是什么,看看下面这个php代码是使用什么加密的?
xiao龟
php加密的是什么
加密的代码如下:!/usr/bin/php-qeNrtWWlTG1cW/SvY5Yqg4krevoSQuIUEiE0LYAwuijKbEGA2YbMk+TUOjEnyc976b+Y2pKZqpNcgz3gm46r5BpL69Ln3nnvved3PrrFyRhOJEAoySvT66ceoMFbS02BNEFE8XRsLRAmkHI7eKMxMHC7tnKOz+Ytuezt7SUrPS6TcOa0c6
- php rad加密公钥过长,看看下面这个php代码是使用什么加密的?
范特嘻嘻
phprad加密公钥过长
加密的代码如下:!/usr/bin/php-qeNrtWWlTG1cW/SvY5Yqg4krevoSQuIUEiE0LYAwuijKbEGA2YbMk+TUOjEnyc976b+Y2pKZqpNcgz3gm46r5BpL69Ln3nnvved3PrrFyRhOJEAoySvT66ceoMFbS02BNEFE8XRsLRAmkHI7eKMxMHC7tnKOz+Ytuezt7SUrPS6TcOa0c6
- 资深开发者挖掘创作潜能指南
太棒了!码龄超过4年的开发者们,你们早已不是编程新手,而是积累了宝贵经验、踩过无数坑、解决过复杂问题的宝藏创作者!是时候将这些无形的资产转化为有影响力的内容,点亮他人也成就自己了。挖掘创作潜能、展现写作才华,可以从以下几个维度入手:一、重新认识你的“创作金矿”-找到你的独特价值深度复盘你的技术旅程:“踩坑”与“填坑”史:哪些Bug让你彻夜难眠?哪些架构设计让你拍案叫绝或后悔不已?哪些性能优化带来了
- 5G RAN接入场景的IMS语音业务开通全流程
码农老gou
5G5G网络
1.UE注册请求声明语音能力UE→AMF:发送RegistrationRequestNAS消息,关键参数:-UE'susagesetting="VoiceCentric"//终端以语音业务为核心-RequestedNSSAI:包含IMS切片标识(S-NSSAI)技术意义:通知网络优先保障语音业务资源(如QoS、移动性管理)。触发AMF按语音终端策略处理注册流程。规范依据:TS24.501§5.5.
- 微软语音合成标记语言SSML文档结构和事件(详细文档和实例)
阿酷tony
AI数字人微信语音合成microsoft微软语音SSML文档结构SSML结构SSML语音合成
说明:MicrosoftAzure中国技术文档网站,请访问https://docs.azure.cn包含输入文本的语音合成标记语言(SSML)确定了文本转语音输出的结构、内容和其他特征。例如,可以使用SSML来定义段落、句子、中断/暂停或静音。可以使用事件标记(例如书签或视素)来包装文本,这些标记可以稍后由应用程序处理。有关如何在SSML文档中构建元素的详细信息,请参阅以下部分。备注某些语音不支持
- LLaMA-Omni 深度解析:打开通往无缝人机语音交互的大门
kakaZhui
前沿多模态大模型:论文与实战llama交互LLMTTS语音识别语音合成人工智能
一、引言:语音交互大模型今天我们来看语音交互大模型LLaMA-Omni,它由中国科学院计算技术研究所的研究者们推出,是一个基于强大的Llama-3.1-8B-Instruct构建的语音语言模型。LLaMA-Omni不仅实现了低至226ms的惊人交互延迟,还能同时生成高质量的文本与语音回复,真正意义上让大语言模型(LLM)具备了“听说”的能力。这篇博客将带你由浅入深,全方位地探索LLaMA-Omni
- 新能源汽车HMI案例:仪表盘与中控屏的沉浸式交互设计
深空数字孪生
汽车交互HMI
新能源汽车HMI案例:仪表盘与中控屏的沉浸式交互设计内容摘要在新能源汽车的驾驶舱里,仪表盘和中控屏不再只是简单的信息显示工具,而是变成了沉浸式交互体验的核心。这些屏幕通过智能设计,不仅能提供丰富的信息,还能通过语音、手势甚至眼神与驾驶者互动。但如何在保证驾驶安全的同时,提供这种沉浸式体验呢?这是一个既充满挑战又极具吸引力的问题。接下来,我们将通过几个实际案例,深入探讨新能源汽车HMI设计的奥秘,看
- AI Agent 2025 大爆发:从 GPT-4o 到 Devin,下一代 Agent 架构与落地趋势深度解析
当大模型学会“看”“听”“点鼠标”,并且还能叫来一整个“Agent舰队”协同工作,软件开发、运营乃至个人生产力的游戏规则正在被重写。1|为什么Agent在2025重新引爆?模型升级带来实时多模态OpenAIGPT-4o把文本、语音、图像三路感知和毫秒级响应塞进同一模型,实时demo像“科幻电影走出屏幕”OpenAI。浏览器级自动操作新上线的OperatorAgent能在Web页面自主点击、滚动、填
- 揭秘智能家居定制平板:其在不同生活场景中的常见应用与重要性
华一精品Adreamer
平板
在智能家居浪潮席卷全球的当下,人与居住空间的交互方式正经历着前所未有的变革。曾经分散在手机APP、语音指令与零星面板上的控制权,如今正迅速向一个更直观、更强大、更契合场景的中心汇聚——定制化平板电脑。这已非简单的一块触摸屏,而是深度融合场景需求、重塑家居交互逻辑、并驱动行业向沉浸式体验跃迁的战略级中枢。一、智能家居发展趋势智能家居行业已经从最初的单品智能,逐步迈入了全屋智能与场景智能的深水区。根据
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 二叉搜索树(BST)
海绵宝宝的好伙伴
数据结构算法c++
二叉搜索树(BinarySearchTree,BST),也称为二叉排序树,是一种重要的数据结构。它将树形结构的灵活性与有序性结合起来,使得查找、插入和删除等操作的平均时间复杂度都能达到O(logN)。二分搜索算法,其底层逻辑恰好对应在一棵隐形的二叉搜索树上的查找过程。例如,对有序数组[0,5,24,34,41,58,62,64,67,69,78]进行二分搜索,其过程完全可以可视化为在一棵以58(中
- 基于 esp32-s3,结合私有化大模型,集asr语音识别、llm大模型、tts语音合成,设计一个技术方案,要求用websocket保持长链接,
以下方案演示了如何基于ESP32-S3,通过私有化大模型组合ASR(语音识别)、LLM(语言大模型)和TTS(语音合成)来构建一个语音交互系统,并且通过WebSocket保持与服务器的长连接通讯。整体方案分为以下几个部分:系统整体架构与数据流协议设计与消息格式服务器端实现示例ESP32-S3端实现示例运行流程与示例下面将对各部分进行详细说明。ESP32-S3没想到私有化大模型速度也能这么快ESP3
- chatgpt赋能python:Python音频降噪处理:使用Python减少噪音并提升声音质量
Python音频降噪处理:使用Python减少噪音并提升声音质量在日常生活中,使用音频通信是非常普遍的。但是,由于各种原因,我们可能会遇到许多噪音干扰,从而降低语音质量并影响通信的效果。为了解决这个问题,我们可以使用Python来降噪音。什么是音频降噪处理?我们每天听到的声音都是由许多不同频率的声音波形组成的。噪音是指在声音中添加了其他频率的声音波形。这些声音可以是来自电器的嗡嗡声、风扇或其他背景
- chatgpt赋能python:Python降噪技术突出人声,在语音处理中的应用
atest166
ChatGptchatgptpython语音识别计算机
Python降噪技术突出人声,在语音处理中的应用在现代社会中,语音处理已经成为了一个普遍的技术,由于环境干扰和录音设备的限制,录音中往往会有许多杂音和噪音,影响语音质量和信号分析。在此背景下,降噪技术逐渐成为了一项重要的技术手段。Python作为一门功能强大的编程语言,可以被广泛地应用于语音处理,尤其是在降噪方面。在本篇文章中,我们会详细探讨Python降噪技术突出人声的应用。什么是语音降噪?语音
- Python:列表切片允许“后边小于左边”吗?
目录1问题2测试3欢迎纠错4论文写作/Python学习智能体1问题 在Python中,列表切片允许“后边小于左边”吗?2测试 在Python中,列表切片允许“后边小于左边”,此时会返回一个空列表,不会报错。 例如:lst=[1,2,3,4,5]print(lst[3:1])#输出:[] 这是因为,当切片的结束索引小于开始索引,且步长为默认的1(正数)时,Python认为没有符合条件的元素,
- 语音信号基础篇1-预加重(Pre-emphasis)
沐黎~
信号与系统语音识别人工智能
预加重就是对语音信号的高频进行补偿,语音信号90%能量集中在有效带宽低频分量上,高频分量频谱(一般我们用其幅度谱,通俗将就是频谱的模长或者绝对值长度)较小,我们让它变大一定,占比多,增强其高频分量。预加重原理也非常简单,其时域表达式非常简单,如下式子:公式中:一般取0.97时域看着就简单后一个减去前一个,看不出有什么规律,我们对其进行z变换,可得:合并同类项,可得:自变量为z,我们画出z变化后的频
- Python 语音识别系列-实战学习-语音识别特征提取
Python语音识别系列-实战学习-语音识别特征提取前言1.预加重、分帧和加窗2.提取特征3.可视化特征4.总结前言语音识别特征提取是语音处理中的一个重要环节,其主要任务是将连续的时域语音信号转换为连续的特征向量,以便于后续的语音识别和语音处理任务。在特征提取阶段,这些特征向量能够捕捉到语音信号中的关键信息,如音调、音色和音节等。特征提取主要可以分为以下几个方面:时域特征提取:包括自相关函数、方差
- 基于MATLAB的语音信号预处理
3.1.语音信号的预加重处理对语音的的高频部分进行加重以去除口唇部分的影响,就必须要对输入的数字语音信号进行预加重处理,以此来增加语音的高频分辨率。通常通过传递函数为的一阶FIR高通数字滤波器来实现预加重,其中为预加重系数,0.9<<1.0。设n时刻的语音采样值为X(n),经过预加重处理的结果为,这里取=0.98。图3.1为该高通滤波器的幅频特性及相频特性。图3.2中分别给出了预加重前和预加重后的
- 可以悬浮在屏幕的搜题软件_大学生常用的搜题APP有哪些?这几个用过的人都说好...
大学生专业课和公共课加起来都不少,因此大家的学习压力也不小。有什么大学常用的搜题软件,可以帮大家提高学习效率,减轻学习和考试压力呢?大学生常用的搜题APP,这里给大家分享几个,觉得好用的,可以给我留言或者点赞哦!1.优题宝优题宝支持网课作业查找答案,大学各个考试科目也能在线搜题。输入方式有三种方式,文字、语音及拍照搜索,答案准确率高。比如问题描述过长,那么拍照搜题是比较方便的,像大学数学,就比较适
- 如何获取微信公众号用户的个人信息(包括OpenId)
一杯冰美式_丶
Java相关知识
最近,对微信公众号有点兴趣,就自己研究了研究里面的一些内容,发现还挺有意思的,而且通过微信公众号可以调用一些比较有意思的接口,就比如百度开发服务平台点击进入里面的很有接口,就比较常见的翻译,语音识别,地理位置等等,都挺好的。好了,不多说,进入正题好了。我想,做微信公众号开发的,对于想获取关注了公众号的用户信息,或者说是当前与后台服务器进行交互的当前用户信息,这个功能是很重要的吧。因为,通过这个,可
- leetcode 61~70 学习经历
文盲老顾
算法leetcode学习链表
leetcode61~70学习经历61.旋转链表62.不同路径63.不同路径II64.最小路径和65.有效数字66.加一67.二进制求和68.文本左右对齐69.x的平方根70.爬楼梯小结61.旋转链表给你一个链表的头节点head,旋转链表,将链表每个节点向右移动k个位置。示例1:输入:head=[1,2,3,4,5],k=2输出:[4,5,1,2,3]示例2:输入:head=[0,1,2],k=4
- AI情绪识别革命:多模态数据库构建全攻略(2024最新版)
AIGC应用创新大全
人工智能数据库网络ai
AI情绪识别革命:多模态数据库构建全攻略(2024最新版)关键词:AI情绪识别、多模态数据库、图像数据、语音数据、文本数据、数据库构建、2024技术摘要:本文全面且详细地介绍2024年AI情绪识别领域中多模态数据库构建的相关知识。从背景引入,讲解多模态数据的核心概念及其关系,阐述核心算法原理与操作步骤,通过项目实战展示实际代码实现,介绍应用场景、工具资源,探讨未来趋势与挑战,并进行总结,同时给出思
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比