- 深入理解 MultiQueryRetriever:提升向量数据库检索效果的强大工具
nseejrukjhad
数据库python
深入理解MultiQueryRetriever:提升向量数据库检索效果的强大工具引言在人工智能和自然语言处理领域,高效准确的信息检索一直是一个关键挑战。传统的基于距离的向量数据库检索方法虽然广泛应用,但仍存在一些局限性。本文将介绍一种创新的解决方案:MultiQueryRetriever,它通过自动生成多个查询视角来增强检索效果,提高结果的相关性和多样性。MultiQueryRetriever的工
- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- 计算机网络笔记分享(第六章 应用层)
寒页_
计算机网络计算机网络笔记
文章目录六、应用层6.1域名系统DNS解析的两种查询方式6.2文件传送协议FTP简单传输协议TFTP6.3远程终端协议TELNET6.4万维网WWW统一资源定位符URL超文本传输协议HTTP万维网的文档HTML万维网的信息检索系统博客和微博社交网站6.5电子邮件6.6动态主机配置协议DHCP6.7简单网络管理协议SNMP6.8应用进程跨越网络的通信几种常用的系统调用6.9P2P应用介绍学习计算机网
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 爬取微博热搜榜
带刺的厚崽
python数据挖掘开发语言
201911081102汤昕宇现代信息检索导论实验一程序运行的截图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GimpWjCB-1639531088565)(程序运行截图.png)]当时微博热搜的截图[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lDXRgrxa-1639531088568)(微博热搜截图.png)]对应的CSV截
- 使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践
qq_37836323
java前端服务器python
使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践1.引言在当今信息爆炸的时代,快速准确地获取所需信息变得越来越重要。DuckDuckGo作为一个注重隐私的搜索引擎,不仅为普通用户提供了优质的搜索服务,还为开发者提供了强大的搜索API。本文将深入探讨如何利用DuckDuckGo搜索API进行智能信息检索,并提供实用的代码示例和最佳实践。2.DuckDuckGo搜索API概述Du
- GitHub每周最火火火项目(8.26-9.1)
FutureUniant
Github周推github音视频人工智能计算机视觉ai
项目名称:Cinnamon/kotaemon项目介绍:kotaemon是一个基于开源RAG(检索增强生成)的工具,旨在实现与文档的聊天交互。它为用户提供了一种便捷的方式来与自己的文档进行对话,通过检索文档中的信息来回答用户的问题。这使得用户能够更高效地获取文档中的知识,提高信息检索和利用的效率。项目地址:https://github.com/Cinnamon/kotaemon项目名称:frappe
- 国开(电大)2024秋《文献检索与论文写作》综合练习2
电大题园(1)
学习方法经验分享笔记
国开(电大)2024秋《文献检索与论文写作》综合练习2一、单选题(14题)1.什么数据库为用户提供深入到图书章节和内容的全文检索(C)A、知网B、万方C、读秀知识库D、维普解析:“读秀”是由海量全文数据及资料基本信息组成的超大型数据库,为用户提供深入到图书章节和内容的全文检索。2.信息检索根据检索对象不同,一般分为:(D)A、二次检索、高级检索B、分类检索、主题检索C、计算机检索、手工检索D、数据
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 每天一个数据分析题(五百二十一)- 词袋模型
跟着紫枫学姐学CDA
数据分析题库数据分析
词袋模型(英语:Bag-of-wordsmodel)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(BagofWord,BoW)的说法正确的是?A.将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的B.词袋模型只能应用在文件分类C.CBOW是词袋模型的一种D.GloVe模型是词袋模型的一种数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于C
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- ChatGPT 3.5/4.0简单使用手册
老童聊AI
明哥陪你学Pythonchatgpt
ChatGPT3.5/4.0是一种先进的人工智能聊天机器人,能够理解和生成自然语言文本,为用户提供信息检索、问题解答、语言翻译等服务。系统要求操作系统:无特定要求,支持主流操作系统。网络连接:需要稳定的网络连接来使用在线服务。安装与注册访问ChatGPT官方网站或下载相应的应用程序。创建账户:根据网站或应用程序的指示完成注册流程。登录:使用注册的账户信息登录。备注:因为国内环境原因,所以我们不得以
- 缓存与数据库的数据一致性解决方案分析
Do&Feel
Java缓存数据库java
在现代应用中,缓存技术的使用广泛且至关重要,主要是为了提高数据访问速度和优化系统整体性能。缓存通过在内存或更快速的存储系统中存储经常访问的数据副本,使得数据检索变得迅速,从而避免了每次请求都需要从较慢的主存储(如硬盘或远程数据库)中读取数据的延迟。这种技术特别适用于读取操作远多于写入操作的场景,如网页浏览、内容分发网络(CDN)和大规模的信息检索系统等。缓存的实现方式多样,包括但不限于内存缓存、分
- 国产智能搜索MindSearch∶ 能够在不到3分钟内收集并整合300多页相关信息?
百态老人
人工智能笔记
MindSearch是一款由上海人工智能实验室推出的国产智能搜索工具,具有强大的自然语言处理和机器学习能力,旨在提供高效、精准的信息检索服务。它能够通过自然语言查询快速在各种文件格式(如PDF、DOCX、TXT)中找到所需信息,并利用人工智能技术提供即时答案和相关搜索结果。MindSearch不仅是一个独立的搜索引擎平台,还提供了一个开源的AI搜索引擎框架,用户可以使用闭源或开源的大语言模型(LL
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 什么是分布式搜索引擎
罗彬桦
分布式搜索引擎搜索引擎分布式
什么是分布式搜索引擎搜索引擎所谓搜索引擎,就是根据用户需求与一定算法,运用特定策略从互联网检索出制定信息反馈给用户的一门检索技术。搜索引擎依托于多种技术,如网络爬虫技术、检索排序技术、网页处理技术、大数据处理技术、自然语言处理技术等,为信息检索用户提供快速、高相关性的信息服务。搜索引擎技术的核心模块一般包括爬虫、索引、检索和排序等,同时可添加其他一系列辅助模块,以为用户创造更好的网络使用环境。分布
- 自然语言处理(NLP)技术的概念及优势
刘小董
学习心得自然语言处理
自然语言处理(NLP)是人工智能领域的一个重要分支,其目标是使计算机能够理解、处理和生成人类自然语言的形式和含义。NLP技术的优势包括:实现人机交互:NLP技术可以使计算机与人类之间实现自然的语言交互,使人们可以通过语音识别、语义理解等方式与计算机进行交流。大规模文本处理:NLP技术可以对大规模文本进行自动化处理和分析,提取关键信息和知识,从而实现文本分类、情感分析、信息检索等任务。自动化翻译:N
- 《倒排索引》
刚满十八工地搬砖
数据结构
1、了解倒排索引的基本概念1.1、倒排索引是什么倒排索引是一种用于全文搜索的数据结构,它将文档中的每个单词映射到包含该单词的所有文档的列表中,然后用该列表替换单词。因此,倒排索引在文本搜索和信息检索中广泛应用,如搜索引擎、网站搜索、文本分类等场景中。具体来说,一个倒排索引包含一个词语词典和每个词语对应的倒排列表。倒排列表中记录了包含该词语的所有文档的编号、词频等信息。这让我们能够在O(1)的时间内
- 如何选择知识图谱的智能问答方法
Komorebi_9999
知识图谱人工智能
在选择基于知识图谱的智能问答方法时,可以考虑以下几个因素来判断哪种方法最适合您的需求:问题的结构化程度:如果您的问题主要是结构化的,即遵循一定的格式和模板,那么基于模板的方法可能是一个不错的选择。相反,如果问题形式多样,结构不固定,那么基于语义解析或深度学习的方法可能更合适。问题的复杂性:对于简单明了的问题,基于模板或信息检索的方法可能更加高效。然而,对于复杂、模糊或需要深入理解的问题,基于语义解
- AIGC 知识:什么是 RAG? 如何使用 RAG 技术帮助我们制作自己的客户服务功能
surfirst
架构AIGC
RAG解释及其示例什么是RAG?检索增强生成(RetrievalAugmentedGeneration,RAG)是一种人工智能技术,将信息检索与文本生成相结合。以下是它的运作方式:检索:1.您提出一个问题或请求信息摘要。2.RAG在庞大的文本数据集中(文档、文章等)搜索相关信息。增强:3.RAG找到相关信息后,不会简单地将其原封不动地呈现出来。相反,它会分析内容,提取关键点,并将其与您的特定问题或
- Elasticsearch:特定领域的生成式 AI - 预训练、微调和 RAG
Elastic 中国社区官方博客
AIElasticsearchElastic人工智能elasticsearch大数据搜索引擎全文检索
作者:来自ElasticSteveDodson有多种策略可以将特定领域的知识添加到大型语言模型(LLM)中,并且作为积极研究领域的一部分,正在研究更多方法。对特定领域数据集进行预训练和微调等方法使LLMs能够推理并生成特定领域语言。然而,使用这些LLM作为知识库仍然容易产生幻觉。如果领域语言与LLM训练数据相似,则通过检索增强生成(RAG)使用外部信息检索系统向LLM提供上下文信息可以改善事实响应
- 【软考高级信息系统项目管理师--第五章:信息系统工程下】
码上有前
软考高项职场和发展程序人生学习方法软件工程
作者:“码上有前”文章简介:软考高级–信息系统项目管理师欢迎小伙伴们点赞、收藏⭐、留言第五章:信息系统工程下数据工程十八、数据模型分类十九、数据建模过程二十、数据元数据标准化管理数掘备份数据容灾数据清理步骤数据开发利用二十四,信息检索系统集成系统安全数据工程十八、数据模型分类1、概念模型:基本元素包含实体、属性、、键、关联;2、辑模型:主要数据结构有层次结构、网状结构、关系型、面向对象模型。3、物
- word embedding是什么,word embedding之前需要做什么?
liaolaa
深度学习自然语言处理pytorch语言模型
我们知道自然语言处理是让机器能够看懂并理解人类所说的语言,能够像人类一样进行交互,和人对话。从自然语言的角度看,NLP可以大致分为自然语言处理和自然语言生成这两部分,就是理解文本和文本生成。具体应用领域几乎覆盖日常生活,如提取文章摘要,文本情感分析,淘宝京东上机器人客服的智能问答,实体命名识别,知识图谱,信息检索等等。又比如说现在已经有方言的语音转文字技术。那具体实现起来该怎么样呢?我们总不能直接
- python实现搜索引擎,数据检索项目:职业查询系统(基本的搜索引擎+爬虫拉勾网职业数据库),搜索引擎可以学习用户的标记,职业网站爬虫生成数据集
violet_ever_garden
python搜索引擎爬虫算法
简介信息检索小组项目,队友已同意上传用spider爬拉钩网站排序文档基于tfidf和cosine相似性从搜索历史和用户标记的相关和不相关的结果中学习IDE规则方法,优化结果基于Tkinter的UI标准登录模块主搜索窗口与页面切换这里我只放出我贡献相关的部分,原文为英文,懒得翻译就机翻一下,文末给出文件链接正文数据处理搜索引擎我们遵循基本的管道,并实现了排名搜索引擎与一些经典的算法,我们已经研究过。
- 工信部颁发的《自然语言与语音处理设计开发工程师》中级证书的培训通知
人工智能技术与咨询
人工智能计算机视觉自然语言处理
国家发展大势所趋,促进各行各业智能化、数字化转型,而计算机自然语言处理是一个快速发展的领域,随着人工智能技术的不断发展和应用,对自然语言处理的需求也越来越大。因此,计算机自然语言处理的就业前景非常好。在就业方面,计算机自然语言处理领域主要涉及人工智能、自然语言处理、机器学习、语音识别、信息检索等方面的工作,包括算法工程师、数据分析师、自然语言处理工程师、语音处理工程师、信息检索工程师等职位。在科技
- 【Meta分析】临床试验信息检索与数据获取
医科堂
系统评价/Meta分析指全面收集所有相关研究并逐个进行严格评价和分析,再用定性或定量合成的方法对资料进行处理得出综合结论的研究方法。在指导学员的过程中发现初学者在学习过程中常常会碰到许多共性问题,本公众号特此开设专栏解答,希望能够和大家共同学习交流Meta分析,共同成长,如有不当之处,还请大家批评指正。本期我们分享的是如何检索和筛选临床试验注册数据。01序言昨日,一位学员提问在筛选clinical
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo