- 【目标检测】YOLOv13:超图增强的实时目标检测新标杆,值得收藏。
Carl_奕然
机器视觉与目标检测目标检测YOLO人工智能
一文掌握YOLOv13最新特性1、引言2、Yolov13详细讲解2.1发布时间与背景2.2相对于YOLOv12的核心提升2.2.1精度显著提升2.2.2轻量化与效率优化2.2.3高阶语义建模能力2.3架构设计与核心创新2.3.1超图自适应关联增强(HyperACE)2.3.2全流程聚合-分发(FullPAD)2.3.3轻量化模块设计2.4性能对比2.4代码示例2.4.1环境配置2.4.2训练代码2
- 临床试验评价指标解析
qq_34062333
临床试验统计学
一、主要疗效终点1.1生存类终点1.1.1总生存期(OS)定义:随机至全因死亡的时间统计方法:Kaplan-Meier,Cox模型优势/局限:金标准,无测量偏倚;但需大样本长随访1.1.2无进展生存期(PFS)定义:随机至疾病进展/死亡的时间统计方法:同上优势/局限:敏感、不受后续治疗影响;但评估易受主观性干扰1.1.3客观缓解率(ORR)定义:肿瘤缩小≥30%的患者比例(RECIST标准)统计方
- 可编程逻辑器件的演进与对比分析
cycf
FPGA之道fpga开发
可编程逻辑器件的演进与对比分析目录离散逻辑芯片与早期PLD的限制CPLD的诞生与结构特点FPGA的架构创新CPLD与FPGA的核心差异总结1.离散逻辑芯片与早期PLD的限制在还没有发明出可编程逻辑器件(PLD:ProgrammableLogicDevice)之前,设计师们只能使用一些专用的小芯片来搭建系统,这些小芯片被称为离散逻辑芯片。这些早期的PLD产品日渐不能满足人们的需求,于是新的可编程逻辑
- 【企业管理】研发管理之产品生命周期管理
flyair_China
企业管理研发管理产品经理
一、产品生命周期管理的体系化方法与思路1.全周期管理框架四阶段模型:导入期(市场验证)、成长期(规模扩张)、成熟期(利润优化)、衰退期(战略退出)。核心流程:需求分析:通过市场调研与用户画像精准定位需求(如特斯拉ModelS导入期的高端定位)。研发协同:采用敏捷开发(Scrum/Kanban)与模块化设计,缩短研发周期(如华为硬件迭代效率提升30%)。生产与供应链:数字化供应链管理(如西门子工业4
- 流量的代价:当“带货神话”撞上法律利剑
数据与人工智能律师
人工智能云计算区块链网络算法
首席数据官高鹏律师数字经济团队创作AI辅助一、数据洪流中的“信任坍塌”在数字经济的浪潮中,一场场直播带货的狂欢正在重塑商业生态。屏幕前的KOL们,用话术编织出商品的“完美图景”,观众在“限时折扣”“独家首发”的鼓点中按下订单键。然而,当流量红利与法律底线形成对冲,一场关于信任的博弈悄然展开。某平台头部主播曾宣称某保健品可“逆转糖尿病”,结果产品成分仅为普通压片糖果;另一直播间用“癌症克星”“三天见
- 线程状态,优先级,守护线程基础详解
黑白极客
javajava多线程并发编程队列后端
线程状态,优先级,守护线程基础详解线程状态停止线程线程休眠线程礼让线程强制执行线程状态检测线程的优先级守护线程线程同步线程状态创建状态(new之后就是创建状态就绪状态(调用start方法之后调用状态(cpu调度之后阻塞状态(当调用sleep,wait,或同步锁时,线程进入阻塞状态,就是代码不往下执行。阻塞状态接触后,重新进入就绪状态,等待cpu的调度。)死亡状态(线程中断或者结束,一旦进入死亡状态
- 基于PaddleOCR的表格识别系统开发
pk_xz123456
仿真模型深度学习算法深度学习开发语言分类安全cnn
基于PaddleOCR的表格识别系统开发1.项目概述本项目旨在使用PaddleOCR框架开发一个高性能的表格识别系统,能够准确识别约30种不同类型的表格结构。系统将处理2500张合成表格图像作为训练数据,并在合成测试集上进行评估。系统核心功能包括表格检测、表格结构识别和表格内容识别三部分。1.1项目背景表格是信息传递的重要载体,广泛存在于各类文档中。传统表格识别方法需要复杂的规则和模板,而基于深度
- RDK X5/X3 yolov5目标检测从环境搭建到设备集成
激萌の小宅
YOLOYOLO目标检测人工智能
1、RDKX5yolov5目标检测之训练环境搭建2、RDKX5yolov5目标检测之pt转onnx3、RDKX5yolov5目标检测之开发机环境部署4、RDKX5yolov5目标检测之onnx转bin5、RDKX5yolov5目标检测之开发板运行
- 口罩检测数据集-1591张图片疫情防控管理 智能门禁系统 公共场所安全监控
cver123
数据集目标跟踪人工智能计算机视觉目标检测pytorch
口罩检测数据集-1591张图片已发布目标检测数据集合集(持续更新)口罩检测数据集介绍数据集概览包含类别应用场景数据样本展示文件结构与使用建议使用建议技术标签YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- 主流AI代码编程工具分享
scuter_yu
aiai编程
在当今数字化时代,AI代码编程工具已成为提升开发效率、优化代码质量的重要助手。这些工具利用人工智能技术,为开发者提供从代码生成、补全到调试、优化等一系列功能,极大地简化了编程流程,让编程变得更加高效、便捷和智能。以下将介绍几款热门的AI代码编程工具。通义灵码产品介绍:通义灵码是阿里云出品的基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成
- 弹幕系统开发实战:QT框架与VS2015源码解析
Paula-柒月拾
本文还有配套的精品资源,点击获取简介:本源码项目融合了三个关键技术领域:弹幕系统设计、Qt框架开发和VisualStudio2015集成。它详细阐述了弹幕系统的核心功能实现,包括弹幕数据结构、渲染、碰撞检测和用户交互。同时,本项目介绍了如何利用Qt5的信号与槽机制、GUI组件和绘图系统来开发弹幕效果,并展示了如何在VisualStudio2015中进行项目管理、编辑、调试和构建。此项目提供了全面的
- 青少年编程与数学 01-012 通用应用软件简介 18 短视频平台
明月看潮生
编程与数学第01阶段青少年编程音视频编程与数学应用软件短视频
青少年编程与数学01-012通用应用软件简介18短视频平台一、什么是短视频平台(一)短视频平台的基本定义(二)短视频平台的工作原理(三)短视频平台的类型二、短视频平台的重要意义(一)为用户提供丰富的娱乐内容(二)推动数字内容创作的民主化(三)促进文化的传播与交流(四)提升用户互动性和社交性(五)推动数字经济的发展三、短视频平台主要产品(一)抖音1.软件功能2.特色3.市场地位和市场价值4.增值服务
- 基于YOLOv5的监控摄像头遮挡检测系统:从数据集到UI界面的完整实现
芯作者
D2:YOLOYOLO神经网络
实时守护监控设备安全,智能识别遮挡攻击的AI解决方案一、问题背景与系统价值在安防监控领域,摄像头遮挡是常见的恶意攻击手段——统计显示35%的安防失效源于摄像头被遮挡。传统方案依赖人工巡查,效率低下且响应延迟。本文将带你构建完整的AI遮挡检测系统,核心创新点:双模检测机制:YOLOv5目标检测+背景建模异常分析轻量化部署:模型量化压缩至1.8MB动态学习:运行时自动更新异常样本库二、系统架构设计[视
- HCCDA – AI华为云人工智能开发者认证-60道单选题题库及答案_华为人工智能入门级开发者认证题库
2401_89172925
人工智能华为云华为
单选题及答案AI模型的评测指标主要分为精度指标和性能指标,以下哪一项不属于常用的性能指标?A.FPS(FramesPerSecond)B.FLOPs(Floating-pointOperationsPerSecond)C.aPs(QueryPerSecond)D.F1值Mask_Detection技能模板提供了口罩检测技能,针对每个人,若没有检测到人脸,也没有检测到口罩,则会显示什么信息?A.No
- 三光吊舱激光测距模块技术解析!
云卓SKYDROID
无人机人工智能高科技云卓科技科普
一、激光测距模块运行方式1.脉冲式测距(直接ToF)原理:通过发射激光脉冲并计算其从发射到反射返回的时间差(Δt),利用公式距离=(光速×Δt)/2计算目标距离。适用场景:适用于远距离(如1~3km),但精度受大气衰减和噪声影响较大。典型参数:测程达3km,精度±2m(如SH150S1吊舱)。2.相位式测距(间接ToF)原理:对激光束进行幅度调制,通过检测发射波与反射波的相位差计算距离,精度可达毫
- 简单工厂模式,工厂模式和注册工厂模式
简单工厂模式(SimpleFactoryPattern)定义:又称静态工厂模式,通过一个工厂类根据传入的参数,返回对应类的实例。它并非GOF标准设计模式,而是一种编程习惯。核心角色:工厂类:包含静态方法,根据参数创建产品实例。抽象产品:定义产品公共接口。具体产品:实现产品接口的具体类。简单工厂模式(SimpleFactoryPattern)属于创建型设计模式,它通过一个工厂类决定创建哪一种产品类的
- 恐怖黎明 决定版 中文 免安 离线运行版
与凌风000
恐怖黎明决定版
最低配置:操作系统*:WindowsXP/WindowsVista/Windows7/Windows8/Windows10处理器:x86兼容2.3GHz或更快的处理器(英特尔第2代酷睿i系列或同等产品)内存:2GB内存显卡:512MBNVIDIAGeForce6800系列或ATIRadeonX800系列或更高DirectX版本:9.0摄氏度存储空间:需要5GB可用空间声卡:兼容DirectX9.0
- 谁来定义未来座舱?新一代车载显示「C位」之战开启
高工智能汽车
c语言人工智能开发语言
在汽车智能网联化转型过程中,车载显示屏幕作为人车交互的重要载体,已经站上了迅猛发展的新起点。一方面,伴随着汽车智能化的加速渗透与发展,传统中控屏与仪表显示屏的单一显示模式已经难以匹配智能化交互需求,车载显示屏正在朝着大屏化、多屏化,以及更灵活的放置方式发展。在此背景下,HUD、副驾显示屏、后排娱乐显示屏等创新产品的出现,正加速获得市场青睐。高工智能汽车研究院监测数据显示,2024年1-12月,中国
- 产品思想实验:AI 长期记忆存储单元(Memory Graph Unit)
人工智能
在现有LLM架构中,“记忆”通常是以线性上下文或简单数据库形式存在,缺乏结构化、语义链接和跨模型兼容性。我们要做的,是将“记忆”升级为一个具备智能检索能力、语义感知能力和多模型兼容能力的图谱系统。一、目标定位构建一个开放、结构化、可演化的AI长期记忆存储单元(MemoryGraphUnit)支持动态更新、优先级排序、冲突消解兼具语义理解与逻辑组织跨平台/跨模型通用格式二、整体架构设计记忆图谱的核心
- Python编程:使用 YOLO 目标检测
倔强老吕
python开发语言
YOLO(YouOnlyLookOnce)是一种基于深度学习的实时目标检测算法,由JosephRedmon等人于2016年首次提出。与传统的两阶段目标检测方法(如R-CNN系列)不同,YOLO将目标检测任务视为一个单一的回归问题,直接在图像上进行一次推理即可预测边界框和类别概率。YOLO的核心思想单次前向传播(SingleShotDetection):YOLO只需对输入图像进行一次神经网络推理,就
- 基于YOLOv8和Faster R-CNN的输电线路异物目标检测项目 检测 输电线异物数据集 输电线缺陷数据集 绝缘子 如何使用YOLOv8和Faster R-CNN训练输电线路异物目标检测数据集
QQ67658008
YOLOr语言cnn输电线路绝缘子线路异物目标检测
电力篇-输电线路缺陷数据集输电线路异物目标检测数据集16000张5种检测目标:‘burst’-爆裂‘defect’-缺陷‘foreign_obj’-异物‘insulator’-绝缘体‘nest’-窝(巢)带标注-YOLO格式可直接用于YOLO系列目标检测算法模型训练如何使用YOLOv8和FasterR-CNN训练输电线路异物目标检测数据集的详细步骤和代码。假设数据集包含16000张图片和5种检测目
- 面试官是怎么筛选简历的
慕慕涵雪月光白
算法
在互联网行业工作十几年,管理过团队,做过经理、总监,看过几千份简历,面试过几百位程序员,包括前端、后端、客户端,也面试过其他岗位,比如产品、设计、运营等。这个过程中最耗时的就是筛简历了,现在一个岗位放出去能收到几百份简历,人力资源会筛掉9成,到我这又会筛掉剩下的9成,最终能进入面试环节的可能就3~5个人。这中间最重要的就是简历,它的质量跟你的求职成功率强相关。所以我想从面试官的角度来说一说写简历要
- n8n和dify有什么区别
小雷FansUnion
AI2025人工智能
n8nvsDify全面对比分析1.产品定位对比1.1核心定位差异维度n8nDify产品类型工作流自动化平台AI应用开发平台主要用途连接不同服务,实现业务自动化快速构建AI聊天机器人和应用目标用户业务人员、运营人员、开发者AI应用开发者、产品经理核心价值提升工作效率,减少重复劳动降低AI应用开发门槛1.2应用场景对比n8n应用场景:├──数据同步自动化│├──CRM与邮件系统同步│├──表格数据自动
- 腾讯云产品都有哪些
苹果企业签名分发
腾讯云
之前我已经系统分析过腾讯云的未来方向,现在需要转向产品架构的实用性介绍。要注意避免简单罗列,而是按用户使用场景分层展开——毕竟直接扔出200+产品名称只会让人眼花缭乱。用户没限定细分领域,所以得覆盖主流服务:先从基础计算存储网络讲起,这是上云刚需;再提PaaS层关键服务如数据库和容器,这是技术选型重点;最后补充音视频、AI等腾讯特色产品,呼应之前提到的战略方向。政企客户可能还关心专有云方案,要单独
- 腾讯云市场怎么样
苹果企业签名分发
火山引擎人工智能智能体
腾讯云作为国内头部云服务商,确实值得从几个维度分析。首先想到它的核心优势是背靠腾讯生态,尤其在游戏、音视频、社交应用领域有天然解决方案整合优势。不过用户没说明使用场景,所以回复既要展示专业能力,又要避免信息过载。注意到用户没提比较对象(比如和阿里云对比),说明ta更关注腾讯云本身特性。应该重点突出:①腾讯系产品的联动性(微信/QQ生态支持)②本土化服务优势③性价比特点。但也不能回避问题,比如国际市
- 《网络攻防技术》《数据分析与挖掘》《网络体系结构与安全防护》这三个研究领域就业如何?
扣棣编程
其他网络数据分析安全
这几个研究领域都是当前信息技术领域的热点方向,就业前景总体来说都非常不错,但各有侧重和特点。我来帮你详细分析一下:1.网络攻防技术就业前景:非常火热且持续增长。核心方向:渗透测试、漏洞挖掘与分析、恶意软件分析、入侵检测/防御、应急响应、威胁情报、安全审计、红蓝对抗等。市场需求:极高。数字化转型深入、网络攻击日益频繁和复杂(勒索软件、APT攻击、供应链攻击等)、数据安全与隐私保护法规(如GDPR、中
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- Veo 3 可以生成视频,并附带配乐
TechVision大咖圈
音视频人工智能
谷歌最新的视频生成AI模型Veo3可以创建与其生成的剪辑相配的音频。周二,在谷歌I/O2025开发者大会上,谷歌发布了Veo3。该公司声称,这款产品可以生成音效、背景噪音,甚至对话,为其制作的视频增添配乐。谷歌表示,Veo3在生成的视频质量方面也比上一代Veo2有所提升。Veo3从周二开始在谷歌的Gemini聊天机器人应用程序中推出,供谷歌每月249.99美元的AIUltra计划订阅者使用,可以通
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟