每日一练(22):连续子数组的最大和


title: 每日一练(22):连续子数组的最大和

categories:[剑指offer]

tags:[每日一练]

date: 2022/02/21


每日一练(22):连续子数组的最大和

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]

输出: 6

解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

1 <= arr.length <= 10^5

-100 <= arr[i] <= 100

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de-zui-da-he-lcof

方法一:前缀和

思路和算法

  1. 都是负数的情况下 每次都是sum为当前值,依次与maxsum比较取其中最大的。
  2. 正常情况下(有正有负)累计前缀和,只要sum大于0 (还有存在价值),就加上来,判断与前面的maxsum谁大,取较大值;
  3. 当前和变小到0时(说明前面的负数抵消了,后面来的数不管是正是负,前面累计的和0都没价值了),则重新从当前数开始,同时保证子数组的连续性。
  4. 注意不是遇到负数就重新赋值。另外需要不停的判断当前和是不是最大的。
int maxSubArray(vector& nums) {
    int maxSum = nums[0];   //默认第一个数为最大值
    int sum = 0;
    for (int i = 0; i < nums.size(); i++) {             
        sum = sum <= 0 ? nums[i] : sum + nums[i];// 当前和不大于0时,说明前面抵消了,从新开始累计和;同样的如果都是负数时,则依次比较哪个最大,赋值给maxSum
        maxSum = sum > maxSum ? sum : maxSum;          // 不停比较更新maxSum
    }
    return maxSum;
}

方法二:动态规划(DP方程)

思路和算法

最原始的动态规划

  • 状态:dp[i]:以第i个数结尾的和的最大值
  • 转移:若dp[i - 1] < 0,则以第i个数结尾的和的最大值为第i个数本身
  • 若dp[i - 1] > 0,则以第i个数结尾的和的最大值为的dp[i - 1]与dp[i - 1] + nums[i]中的较大者
  • 避免遍历dp数组,每次比较dp更新结束后比较res与dp[i]的大小作为返回值
int maxSubArray(vector& nums) {
    int len = nums.size();
    vector dp(len);
    dp[0] = nums[0];
    int res = nums[0];
    for (int i = 1; i < len; i++) {
        //判断
        if(dp[i - 1] > 0) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
        } else {
            dp[i] = nums[i];
        }
        //三目运算符
        //dp[i] = (dp[i - 1] > 0) ? dp[i] = max(dp[i - 1] + nums[i], nums[i]) : nums[i];
        res = max(res, dp[i]);
    }
    return res;
}

你可能感兴趣的:(每日一练(22):连续子数组的最大和)