- RK3588 Linux板端推理时报错Segmentation fault解决办法
kennyooooo
linux目标检测yolo嵌入式硬件
目录问题解决生成core文件修改core文件存储路径Ubuntu20.04下的异常状况利用core文件进行调试问题最近在使用rk3588跑官方提供的yolov5模型demo,能够完成单张图片的目标检测,但是在运行视频流demo时,系统报错:segmentationfault(coredumped)此时没有再给出更多的报错信息,不太好debug,在网上阅读了一些博客现在整理一下。解决在Linux下遇
- 踩坑,RK3588编译运行rknn的c++例程
血玥珏
rknnc语言c++开发语言
官网:https://github.com/airockchip/rknn-toolkit2下载rknn-toolkit2-master.zip解压缩后cd进入rknn-toolkit2-master/rknpu2/examples/rknn_yolov5_demo将脚本设置可执行chmod777build-linux.sh按照README_CN.md里的说明运行./build-linux.sh-
- 人工智能训练师如何做图像数据标注,从情感分析和实体分析两个个场景分析
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,图像情感分析和图像实体分析是两个重要的应用场景。高质量的图像数据标注对于训练情感识别模型和目标检测/语义分割模型至关重要。本指南将详细介绍:情感分析标注(EmotionAnalysis)实体分析标注(EntityRecognition)自动化标注工具Python代码示例数据格式与存储标注数据质量评估1.情感分析(EmotionAnalysis)标注1.1情感分析简介图像情感分析(
- 2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)
emmm形成中
pythonopencvYOLO
2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)摘要:本文基于OpenCV与YOLOv8模型,实现实时目标检测与跟踪功能,支持多类别目标识别与运动轨迹绘制。代码兼容Python3.7+,步骤清晰且经过稳定性测试,适合中高级开发者参考。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipinstallopencv-python==4
- 消融实验(Ablation Study):模型优化的关键分析方法
烟锁池塘柳0
深度学习人工智能计算机视觉深度学习
文章目录消融实验(AblationStudy):模型优化的关键分析方法什么是消融实验?为什么要做消融实验?实验步骤典型实验案例案例1:图像分类模型案例2:目标检测模型实验结果解读要点消融实验的意义总结消融实验(AblationStudy):模型优化的关键分析方法什么是消融实验?消融实验(AblationStudy)是机器学习领域用于评估模型组件有效性的重要研究方法。通过逐步移除模型的某些模块/特征
- QT开发技术 [opencv加载onnx模型,dnn推理]
增援未来章北海
QT开发技术qtopencvdnn
一、导出onnx模型yoloexportmodel=xx\xx\best.ptformat=onnx二、qt加载onnx模型,推理显示std::stringfileName=QCoreApplication::applicationDirPath().toStdString()+"/Model/best.onnx";cv::dnn::Netnet=cv::dnn::readNetFromONNX(
- 计算机视觉与深度学习实战:以Python为工具,基于帧间差法进行视频目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于帧间差法进行视频目标检测
一、引言随着科技的飞速发展,计算机视觉和深度学习已成为当今科技领域的热门话题。它们不仅在科研领域取得了显著的成果,而且在安防监控、智能交通、医疗影像分析、工业自动化等领域得到了广泛的应用。本文旨在探讨计算机视觉与深度学习的实战应用,特别是以Python为工具,基于帧间差法进行视频目标检测的方法。二、计算机视觉概述计算机视觉是一门研究如何使机器从数字图像或视频中提取、分析和理解有用信息的学科。它涉及
- 适用于复杂背景的YOLOv8改进:基于DCN的特征提取能力提升研究
向哆哆
YOLO目标跟踪机器学习yolov8
文章目录1.YOLOv8的性能瓶颈与改进需求1.1YOLOv8的优势与局限性1.2可变形卷积(DCN)的优势2.DCN在YOLOv8中的应用2.1DCN的演变与YOLOv8的结合2.2将DCN嵌入YOLOv8的结构中2.2.1DCNv1在YOLOv8中的应用2.2.2DCNv2与DCNv3的优化2.3实验与性能对比3.结果与分析3.1数据集与实验设置实验设置:3.2实验结果3.2.1COCO数据集
- YOLOv11快速上手:如何在本地使用TorchServe部署目标检测模型
SYC_MORE
YOLOv11系列教程:模型训练优化与部署全攻略TorchServeYOLOv11教程模型部署与推理TorchServe应用目标检测模型训练YOLO模型导出
引言YOLOv11是最新的目标检测模型,以其高效和准确著称,广泛应用于图像分割、姿态估计等任务。本文将详细介绍如何使用YOLOv11训练你的第一个目标检测模型,并通过TorchServe在本地进行部署,实现模型的快速推理。环境准备在开始之前,确保你的开发环境满足以下要求:Python版本:3.8或以上PyTorch:1.9或以上CUDA:如果使用GPU,加速训练和推理TorchServe:用于模型
- 基于深度学习的焊缝缺陷检测识别系统:YOLOv10 + UI界面 + 数据集
深度学习&目标检测实战项目
深度学习YOLOui目标跟踪分类人工智能
1.引言1.1背景介绍焊接是现代工业制造中的重要工艺之一,其质量直接影响产品的安全性、耐用性和可靠性。然而,由于焊接工艺的复杂性,在实际应用中不可避免地会出现焊缝缺陷,如气孔、裂纹、未熔合等。这些缺陷不仅降低了焊接质量,还可能导致严重的安全事故。因此,如何高效、准确地检测焊缝缺陷成为工业领域的重要研究课题。传统的焊缝缺陷检测方法主要依赖于人工经验或简单的图像处理技术。这些方法不仅效率低下,而且受主
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- YOLOv8与BiFormer注意力机制的融合:提升多场景目标检测性能的研究
向哆哆
YOLO目标检测目标跟踪yolov8
文章目录保姆级YOLOv8改进:适用于多种检测场景的BiFormer注意力机制(Bi-levelRoutingAttention)1.YOLOv8的改进背景2.BiFormer注意力机制的核心原理2.1Bi-levelAttention结构2.2路由策略与加权融合3.YOLOv8与BiFormer的结合3.1YOLOv8架构概述3.2BiFormer与YOLOv8的融合策略4.实现代码示例5.结果
- 图像检测分析难题?三维天地引入YOLO目标检测技术带来全新解决方案!
资讯分享周
YOLO目标检测人工智能
在当今的检验检测认证行业,利用图像检测技术分析样本的相关指标已经成为众多检验检测领域的重要需求。无论是医学影像诊断、材料科学、食品检测还是质量控制,都依赖于精确的图像分析来提高检测的效率和准确性。然而,传统的图像处理方法面临着诸多挑战,如庞大的数据量、复杂的特征提取、漫长的模型训练周期以及复杂的公式计算等。这些问题不仅限制了检测的效率,还对结果的准确性产生了负面影响。一、实际业务操作中的工作难点1
- 25/2/16 <算法笔记> DirectPose
青椒大仙KI11
视觉计算机视觉
DirectPose是一种直接从图像中预测物体的6DoF(位姿:6DegreesofFreedom)姿态的方法,包括平移和平面旋转。它在目标检测、机器人视觉、增强现实(AR)和自动驾驶等领域中具有广泛应用。相比于传统的位姿估计方法,DirectPose试图简化复杂的处理流程,采用端到端的方式直接从图像中输出位姿参数。1.DirectPose是什么?DirectPose是一种端到端的神经网络方法,旨
- 25/2/18 <算法笔记> ByteTrack
青椒大仙KI11
笔记
ByteTrack(发表在2021年)是一种高效且精确的**多目标跟踪(Multi-ObjectTracking,MOT)**算法。它属于目标跟踪领域中基于检测的类别(trackingbydetection),核心思想是利用目标检测器的高置信度和低置信度检测结果,通过简单的后处理策略实现高效和准确的目标跟踪。多目标跟踪(MOT)的主要目的是对视频或帧序列中的多个对象进行检测和跟踪。在MOT方法中通
- 集成测试总结文档
脚本之家
集成测试
1.集成测试的定义集成测试(IntegrationTesting)是在单元测试之后,将多个独立的软件模块或组件组合在一起进行测试的过程,目的是验证这些模块之间的接口、数据传递、协作逻辑是否符合设计要求,并发现因集成引发的缺陷。2.集成测试的核心目标检测模块/组件间的接口错误(如参数传递错误、数据格式不一致)。验证集成后的功能是否符合系统设计预期。确保全局数据结构在跨模块使用时的一致性。发现资源冲突
- 基于Transformer的YOLOv8检测头架构改进:提升目标检测精度的全新突破(YOLOv8)
步入烟尘
transformerYOLO目标检测
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Transformer的YOLOv8检测头架构改进:提升目标检测精度的全新突破什么是DAtten
- 【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析...
985小水博一枚呀
论文解读深度学习目标检测YOLO人工智能算法架构网络
【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…文章目录【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解
- YOLOv8到YOLOv11:深度解析目标检测架构的演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉目标检测YOLO神经网络深度学习
YOLOv8到YOLOv11:深度解析目标检测架构的演进在计算机视觉领域,YOLO(YouOnlyLookOnce)系列模型一直是实时目标检测领域的佼佼者。从2015年的YOLOv1到2024年的YOLOv11,这一系列模型经历了快速的迭代和发展,不断刷新着目标检测的性能和效率。然而,由于部分YOLO版本缺乏详细的学术论文和架构图,研究人员和开发者在理解这些模型的工作原理时往往面临挑战。最近,一篇
- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- 深度学习之目标检测的常用标注工具
铭瑾熙
人工智能机器学习深度学习深度学习目标检测目标跟踪
1LabelImgLabelImg是一款开源的图像标注工具,标签可用于分类和目标检测,它是用Python编写的,并使用Qt作为其图形界面,简单好用。注释以PASCALVOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持COCO数据集格式。2labelmelabelme是一款开源的图像/视频标注工具,标签可用于目标检测、分割和分类。灵感是来自于MIT开源的一款标注工具Label
- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- 使用rknn进行yolo11-pose部署
点PY
深度学习模型部署pytorch深度学习人工智能
文章目录概要生成ONNX生成RKNN实测效果概要使用RKNN进行YOLOv11Pose部署的必要性在于,RKNN能将YOLOv11Pose模型转化为适合Rockchip硬件平台(如RV1109、RV1126)执行的格式,充分利用其AI加速功能,显著提高推理速度和效率。此外,RKNN提供模型优化(如量化)功能,有助于减少计算资源消耗,提升实时处理能力,特别适合在嵌入式设备上进行高效、低功耗的姿态估计
- 改进YOLO系列 | YOLOv5/v7 引入 Dynamic Snake Convolution | 动态蛇形卷积
wei子
YOLO目标跟踪人工智能
改进YOLO系列:动态蛇形卷积(DynamicSnakeConvolution,DSC)简介YOLO系列目标检测算法以其速度和精度著称,但对于细长目标例如血管、道路等,其性能仍有提升空间。动态蛇形卷积(DSC)是YOLOv5/v7中引入的一种改进,旨在更好地处理细长目标。DSC原理DSC的核心思想是使用类似蛇形运动的卷积核来提取细长目标的特征。具体来说,DSC卷积核沿着一系列控制点移动,并根据每个
- 动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv8】
步入烟尘
YOLO动态蛇形卷积DySnakeConv
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv
- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- 动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
向哆哆
YOLO目标跟踪深度学习YOLOv8
文章目录动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度1.什么是动态蛇形卷积?2.YOLOv8的卷积改进2.1常规卷积与动态蛇形卷积的区别2.2动态蛇形卷积的实现原理2.3YOLOv8中集成动态蛇形卷积3.手把手实现动态蛇形卷积3.1安装依赖3.2设计动态蛇形卷积层3.3集成到YOLOv8中3.4训练与优化4.动态蛇形卷积的进一步优化4.1蛇形路径的动态学习4.1.1学习动态路径
- yolov8人脸识别与脸部关键点检测(代码+原理)
QQ_1309399183
计算机视觉实战项目集锦YOLO人工智能人脸识别yolo人脸检测
YOLOv8脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8Face项目的一些特点和
- yolov5 python API(供其他程序调用)
m0_67401499
面试学习路线阿里巴巴python深度学习计算机视觉机器学习sklearn
你的yolov5??是否只局限于detect.py?如果其他程序要调用yolov5,就需要制作一个detect.py的pythonAPI。python无处不对象,制作detectAPI实际上就是制作detect类。目录前言一、总体思路二、制作detect类二、调用detect类结语前言yolov5源码版本:截止2022.2.3链接:https://github.com/ultralytics/yo
- python实现将RGB相机与事件相机的照片信息进行融合以进行目标检测
go5463158465
python算法python数码相机目标检测
要将RGB相机与事件相机的照片信息进行融合以进行目标检测,我们可以按以下步骤进行:整体思路数据读取:分别读取RGB图像和事件相机数据。数据预处理:对RGB图像和事件数据进行必要的预处理,如调整尺寸、归一化等。数据融合:将预处理后的RGB图像和事件数据进行融合。目标检测:使用融合后的数据进行目标检测。代码实现importcv2importnumpyasnpimporttorchfromtorchvi
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1