行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。
行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。
行为型模式是 GoF 设计模式中最为庞大的一类,它包含以下 11 种模式。
- 模板方法(Template Method)模式:定义一个操作中的算法骨架,将算法的一些步骤延迟到子类中,使得子类在可以不改变该算法结构的情况下重定义该算法的某些特定步骤。
- 策略(Strategy)模式:定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的改变不会影响使用算法的客户。
- 命令(Command)模式:将一个请求封装为一个对象,使发出请求的责任和执行请求的责任分割开。
- 职责链(Chain of Responsibility)模式:把请求从链中的一个对象传到下一个对象,直到请求被响应为止。通过这种方式去除对象之间的耦合。
- 状态(State)模式:允许一个对象在其内部状态发生改变时改变其行为能力。
- 观察者(Observer)模式:多个对象间存在一对多关系,当一个对象发生改变时,把这种改变通知给其他多个对象,从而影响其他对象的行为。
- 中介者(Mediator)模式:定义一个中介对象来简化原有对象之间的交互关系,降低系统中对象间的耦合度,使原有对象之间不必相互了解。
- 迭代器(Iterator)模式:提供一种方法来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。
- 访问者(Visitor)模式:在不改变集合元素的前提下,为一个集合中的每个元素提供多种访问方式,即每个元素有多个访问者对象访问。
- 备忘录(Memento)模式:在不破坏封装性的前提下,获取并保存一个对象的内部状态,以便以后恢复它。
- 解释器(Interpreter)模式:提供如何定义语言的文法,以及对语言句子的解释方法,即解释器。
以上 11 种行为型模式,除了模板方法模式和解释器模式是类行为型模式,其他的全部属于对象行为型模式,下面我将详细介绍它们的特点、结构与应用。
观察者模式
在现实世界中,许多对象并不是独立存在的,其中一个对象的行为发生改变可能会导致一个或者多个其他对象的行为也发生改变。
在软件世界也是这样,例如,Excel 中的数据与折线图、饼状图、柱状图之间的关系;MVC 模式中的模型与视图的关系;事件模型中的事件源与事件处理者。所有这些,如果用观察者模式来实现就非常方便。
模式的定义与特点
观察者(Observer)模式的定义:指多个对象间存在一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。这种模式有时又称作发布-订阅模式、模型-视图模式,它是对象行为型模式。
观察者模式是一种对象行为型模式,其主要优点如下。
- 降低了目标与观察者之间的耦合关系,两者之间是抽象耦合关系。
- 目标与观察者之间建立了一套触发机制。
它的主要缺点如下。
- 目标与观察者之间的依赖关系并没有完全解除,而且有可能出现循环引用。
- 当观察者对象很多时,通知的发布会花费很多时间,影响程序的效率。
模式的结构与实现
实现观察者模式时要注意具体目标对象和具体观察者对象之间不能直接调用,否则将使两者之间紧密耦合起来,这违反了面向对象的设计原则。
1. 模式的结构
观察者模式的主要角色如下。
- 抽象主题(Subject)角色:也叫抽象目标类,它提供了一个用于保存观察者对象的聚集类和增加、删除观察者对象的方法,以及通知所有观察者的抽象方法。
- 具体主题(Concrete Subject)角色:也叫具体目标类,它实现抽象目标中的通知方法,当具体主题的内部状态发生改变时,通知所有注册过的观察者对象。
- 抽象观察者(Observer)角色:它是一个抽象类或接口,它包含了一个更新自己的抽象方法,当接到具体主题的更改通知时被调用。
- 具体观察者(Concrete Observer)角色:实现抽象观察者中定义的抽象方法,以便在得到目标的更改通知时更新自身的状态。
观察者模式的结构图如图 1 所示。
模式的应用场景
通过前面的分析与应用实例可知观察者模式适合以下几种情形。
- 对象间存在一对多关系,一个对象的状态发生改变会影响其他对象。
- 当一个抽象模型有两个方面,其中一个方面依赖于另一方面时,可将这二者封装在独立的对象中以使它们可以各自独立地改变和复用。
模式的扩展
在 Java中,通过 java.util.Observable 类和 java.util.Observer 接口定义了观察者模式,只要实现它们的子类就可以编写观察者模式实例。
1. Observable类
Observable 类是抽象目标类,它有一个 Vector 向量,用于保存所有要通知的观察者对象,下面来介绍它最重要的 3 个方法。
- void addObserver(Observer o) 方法:用于将新的观察者对象添加到向量中。
- void notifyObservers(Object arg) 方法:调用向量中的所有观察者对象的 update。方法,通知它们数据发生改变。通常越晚加入向量的观察者越先得到通知。
- void setChange() 方法:用来设置一个 boolean 类型的内部标志位,注明目标对象发生了变化。当它为真时,notifyObservers() 才会通知观察者。
2. Observer 接口
Observer 接口是抽象观察者,它监视目标对象的变化,当目标对象发生变化时,观察者得到通知,并调用 void update(Observable o,Object arg) 方法,进行相应的工作。
中介者模式
在现实生活中,常常会出现好多对象之间存在复杂的交互关系,这种交互关系常常是“网状结构”,它要求每个对象都必须知道它需要交互的对象。
如果把这种“网状结构”改为“星形结构”的话,将大大降低它们之间的“耦合性”,这时只要找一个“中介者”就可以了。
在软件的开发过程中,这样的例子也很多,例如,在 MVC 框架中,控制器(C)就是模型(M)和视图(V)的中介者;还有大家常用的 QQ 聊天程序的“中介者”是 QQ 服务器。所有这些,都可以采用“中介者模式”来实现,它将大大降低对象之间的耦合性,提高系统的灵活性。
模式的定义与特点
中介者(Mediator)模式的定义:定义一个中介对象来封装一系列对象之间的交互,使原有对象之间的耦合松散,且可以独立地改变它们之间的交互。中介者模式又叫调停模式,它是迪米特法则的典型应用。
中介者模式是一种对象行为型模式,其主要优点如下。
- 降低了对象之间的耦合性,使得对象易于独立地被复用。
- 将对象间的一对多关联转变为一对一的关联,提高系统的灵活性,使得系统易于维护和扩展。
其主要缺点是:当同事类太多时,中介者的职责将很大,它会变得复杂而庞大,以至于系统难以维护。
模式的结构与实现
中介者模式实现的关键是找出“中介者”,下面对它的结构和实现进行分析。
1. 模式的结构
中介者模式包含以下主要角色。
- 抽象中介者(Mediator)角色:它是中介者的接口,提供了同事对象注册与转发同事对象信息的抽象方法。
- 具体中介者(ConcreteMediator)角色:实现中介者接口,定义一个 List 来管理同事对象,协调各个同事角色之间的交互关系,因此它依赖于同事角色。
- 抽象同事类(Colleague)角色:定义同事类的接口,保存中介者对象,提供同事对象交互的抽象方法,实现所有相互影响的同事类的公共功能。
- 具体同事类(Concrete Colleague)角色:是抽象同事类的实现者,当需要与其他同事对象交互时,由中介者对象负责后续的交互。
中介者模式的结构图如图 1 所示。
图1 中介者模式的结构图
模式的应用场景
前面分析了中介者模式的结构与特点,下面分析其以下应用场景。
- 当对象之间存在复杂的网状结构关系而导致依赖关系混乱且难以复用时。
- 当想创建一个运行于多个类之间的对象,又不想生成新的子类时。
模式的扩展
在实际开发中,通常采用以下两种方法来简化中介者模式,使开发变得更简单。
- 不定义中介者接口,把具体中介者对象实现成为单例。
- 同事对象不持有中介者,而是在需要的时f矣直接获取中介者对象并调用。
图2所示是简化中介者模式的结构图。
图2 简化中介者模式的结构图
迭代器模式
在现实生活以及程序设计中,经常要访问一个聚合对象中的各个元素,如“数据结构”中的链表遍历,通常的做法是将链表的创建和遍历都放在同一个类中,但这种方式不利于程序的扩展,如果要更换遍历方法就必须修改程序源代码,这违背了”开闭原则“。
既然将遍历方法封装在聚合类中不可取,那么聚合类中不提供遍历方法,将遍历方法由用户自己实现是否可行呢?答案是同样不可取,因为这种方式会存在两个缺点:
- 暴露了聚合类的内部表示,使其数据不安全;
- 增加了客户的负担。
“迭代器模式”能较好地克服以上缺点,它在客户访问类与聚合类之间插入一个迭代器,这分离了聚合对象与其遍历行为,对客户也隐藏了其内部细节,且满足“单一职责原则”和“开闭原则”,如 Java中的 Collection、List、Set、Map 等都包含了迭代器。
模式的定义与特点
迭代器(Iterator)模式的定义:提供一个对象来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。迭代器模式是一种对象行为型模式,其主要优点如下。
- 访问一个聚合对象的内容而无须暴露它的内部表示。
- 遍历任务交由迭代器完成,这简化了聚合类。
- 它支持以不同方式遍历一个聚合,甚至可以自定义迭代器的子类以支持新的遍历。
- 增加新的聚合类和迭代器类都很方便,无须修改原有代码。
- 封装性良好,为遍历不同的聚合结构提供一个统一的接口。
其主要缺点是:增加了类的个数,这在一定程度上增加了系统的复杂性。
模式的结构与实现
迭代器模式是通过将聚合对象的遍历行为分离出来,抽象成迭代器类来实现的,其目的是在不暴露聚合对象的内部结构的情况下,让外部代码透明地访问聚合的内部数据。现在我们来分析其基本结构与实现方法。
1. 模式的结构
迭代器模式主要包含以下角色。
- 抽象聚合(Aggregate)角色:定义存储、添加、删除聚合对象以及创建迭代器对象的接口。
- 具体聚合(ConcreteAggregate)角色:实现抽象聚合类,返回一个具体迭代器的实例。
- 抽象迭代器(Iterator)角色:定义访问和遍历聚合元素的接口,通常包含 hasNext()、first()、next() 等方法。
- 具体迭代器(Concretelterator)角色:实现抽象迭代器接口中所定义的方法,完成对聚合对象的遍历,记录遍历的当前位置。
其结构图如图 1 所示。
图1 迭代器模式的结构图
模式的应用场景
前面介绍了关于迭代器模式的结构与特点,下面介绍其应用场景,迭代器模式通常在以下几种情况使用。
- 当需要为聚合对象提供多种遍历方式时。
- 当需要为遍历不同的聚合结构提供一个统一的接口时。
- 当访问一个聚合对象的内容而无须暴露其内部细节的表示时。
由于聚合与迭代器的关系非常密切,所以大多数语言在实现聚合类时都提供了迭代器类,因此大数情况下使用语言中已有的聚合类的迭代器就已经够了。
模式的扩展
迭代器模式常常与组合模式结合起来使用,在对组合模式中的容器构件进行访问时,经常将迭代器潜藏在组合模式的容器构成类中。当然,也可以构造一个外部迭代器来对容器构件进行访问,其结构图如图 2 所示。
图2 组合迭代器模式的结构图
访问者模式
在现实生活中,有些集合对象中存在多种不同的元素,且每种元素也存在多种不同的访问者和处理方式。
这样的例子还有很多,例如,电影或电视剧中的人物角色,不同的观众对他们的评价也不同;还有顾客在商场购物时放在“购物车”中的商品,顾客主要关心所选商品的性价比,而收银员关心的是商品的价格和数量。
这些被处理的数据元素相对稳定而访问方式多种多样的数据结构,如果用“访问者模式”来处理比较方便。访问者模式能把处理方法从数据结构中分离出来,并可以根据需要增加新的处理方法,且不用修改原来的程序代码与数据结构,这提高了程序的扩展性和灵活性。
模式的定义与特点
访问者(Visitor)模式的定义:将作用于某种数据结构中的各元素的操作分离出来封装成独立的类,使其在不改变数据结构的前提下可以添加作用于这些元素的新的操作,为数据结构中的每个元素提供多种访问方式。它将对数据的操作与数据结构进行分离,是行为类模式中最复杂的一种模式。
访问者(Visitor)模式是一种对象行为型模式,其主要优点如下。
- 扩展性好。能够在不修改对象结构中的元素的情况下,为对象结构中的元素添加新的功能。
- 复用性好。可以通过访问者来定义整个对象结构通用的功能,从而提高系统的复用程度。
- 灵活性好。访问者模式将数据结构与作用于结构上的操作解耦,使得操作集合可相对自由地演化而不影响系统的数据结构。
- 符合单一职责原则。访问者模式把相关的行为封装在一起,构成一个访问者,使每一个访问者的功能都比较单一。
访问者(Visitor)模式的主要缺点如下。
- 增加新的元素类很困难。在访问者模式中,每增加一个新的元素类,都要在每一个具体访问者类中增加相应的具体操作,这违背了“开闭原则”。
- 破坏封装。访问者模式中具体元素对访问者公布细节,这破坏了对象的封装性。
- 违反了依赖倒置原则。访问者模式依赖了具体类,而没有依赖抽象类。
模式的结构与实现
访问者(Visitor)模式实现的关键是如何将作用于元素的操作分离出来封装成独立的类,其基本结构与实现方法如下。
1. 模式的结构
访问者模式包含以下主要角色。
- 抽象访问者(Visitor)角色:定义一个访问具体元素的接口,为每个具体元素类对应一个访问操作 visit() ,该操作中的参数类型标识了被访问的具体元素。
- 具体访问者(ConcreteVisitor)角色:实现抽象访问者角色中声明的各个访问操作,确定访问者访问一个元素时该做什么。
- 抽象元素(Element)角色:声明一个包含接受操作 accept() 的接口,被接受的访问者对象作为 accept() 方法的参数。
- 具体元素(ConcreteElement)角色:实现抽象元素角色提供的 accept() 操作,其方法体通常都是 visitor.visit(this) ,另外具体元素中可能还包含本身业务逻辑的相关操作。
- 对象结构(Object Structure)角色:是一个包含元素角色的容器,提供让访问者对象遍历容器中的所有元素的方法,通常由 List、Set、Map 等聚合类实现。
其结构图如图 1 所示。
图1 访问者(Visitor)模式的结构图
模式的应用场景
通常在以下情况可以考虑使用访问者(Visitor)模式。
- 对象结构相对稳定,但其操作算法经常变化的程序。
- 对象结构中的对象需要提供多种不同且不相关的操作,而且要避免让这些操作的变化影响对象的结构。
- 对象结构包含很多类型的对象,希望对这些对象实施一些依赖于其具体类型的操作。
模式的扩展
访问者(Visitor)模式是使用频率较高的一种设计模式,它常常同以下两种设计模式联用。
(1)与“迭代器模式”联用。因为访问者模式中的“对象结构”是一个包含元素角色的容器,当访问者遍历容器中的所有元素时,常常要用迭代器。
(2)访问者(Visitor)模式同“组合模式”联用。因为访问者(Visitor)模式中的“元素对象”可能是叶子对象或者是容器对象,如果元素对象包含容器对象,就必须用到组合模式。
其结构图如图2 所示。
图2 包含组合模式的访问者模式的结构图
备忘录模式
其实很多应用软件都提供了这项功能,如 Word、记事本、Photoshop、Eclipse 等软件在编辑时按 Ctrl+Z 组合键时能撤销当前操作,使文档恢复到之前的状态;还有在 IE 中的后退键、数据库事务管理中的回滚操作、玩游戏时的中间结果存档功能、数据库与操作系统的备份操作、棋类游戏中的悔棋功能等都属于这类。
备忘录模式能记录一个对象的内部状态,当用户后悔时能撤销当前操作,使数据恢复到它原先的状态。
模式的定义与特点
备忘录(Memento)模式的定义:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,以便以后当需要时能将该对象恢复到原先保存的状态。该模式又叫快照模式。
备忘录模式是一种对象行为型模式,其主要优点如下。
- 提供了一种可以恢复状态的机制。当用户需要时能够比较方便地将数据恢复到某个历史的状态。
- 实现了内部状态的封装。除了创建它的发起人之外,其他对象都不能够访问这些状态信息。
- 简化了发起人类。发起人不需要管理和保存其内部状态的各个备份,所有状态信息都保存在备忘录中,并由管理者进行管理,这符合单一职责原则。
其主要缺点是:资源消耗大。如果要保存的内部状态信息过多或者特别频繁,将会占用比较大的内存资源。
模式的结构与实现
备忘录模式的核心是设计备忘录类以及用于管理备忘录的管理者类,现在我们来学习其结构与实现。
1. 模式的结构
备忘录模式的主要角色如下。
- 发起人(Originator)角色:记录当前时刻的内部状态信息,提供创建备忘录和恢复备忘录数据的功能,实现其他业务功能,它可以访问备忘录里的所有信息。
- 备忘录(Memento)角色:负责存储发起人的内部状态,在需要的时候提供这些内部状态给发起人。
- 管理者(Caretaker)角色:对备忘录进行管理,提供保存与获取备忘录的功能,但其不能对备忘录的内容进行访问与修改。
备忘录模式的结构图如图 1 所示。
模式的应用场景
前面学习了备忘录模式的定义与特点、结构与实现,现在来看该模式的以下应用场景。
- 需要保存与恢复数据的场景,如玩游戏时的中间结果的存档功能。
- 需要提供一个可回滚操作的场景,如 Word、记事本、Photoshop,Eclipse 等软件在编辑时按 Ctrl+Z 组合键,还有数据库中事务操作。
模式的扩展
在前面介绍的备忘录模式中,有单状态备份的例子,也有多状态备份的例子。下面介绍备忘录模式如何同原型模式混合使用。在备忘录模式中,通过定义“备忘录”来备份“发起人”的信息,而原型模式的 clone() 方法具有自备份功能,所以,如果让发起人实现 Cloneable 接口就有备份自己的功能,这时可以删除备忘录类。
其结构图如图 2 所示。
解释器模式
在软件开发中,会遇到有些问题多次重复出现,而且有一定的相似性和规律性。如果将它们归纳成一种简单的语言,那么这些问题实例将是该语言的一些句子,这样就可以用“编译原理”中的解释器模式来实现了。
模式的定义与特点
解释器(Interpreter)模式的定义:给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的实例。这种模式实现了文法表达式处理的接口,该接口解释一个特定的上下文。
这里提到的文法和句子的概念同编译原理中的描述相同,“文法”指语言的语法规则,而“句子”是语言集中的元素。例如,汉语中的句子有很多,“我是中国人”是其中的一个句子,可以用一棵语法树来直观地描述语言中的句子。
解释器模式是一种类行为型模式,其主要优点如下。
- 扩展性好。由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法。
- 容易实现。在语法树中的每个表达式节点类都是相似的,所以实现其文法较为容易。
解释器模式的主要缺点如下。
- 执行效率较低。解释器模式中通常使用大量的循环和递归调用,当要解释的句子较复杂时,其运行速度很慢,且代码的调试过程也比较麻烦。
- 会引起类膨胀。解释器模式中的每条规则至少需要定义一个类,当包含的文法规则很多时,类的个数将急剧增加,导致系统难以管理与维护。
- 可应用的场景比较少。在软件开发中,需要定义语言文法的应用实例非常少,所以这种模式很少被使用到。
模式的结构与实现
解释器模式常用于对简单语言的编译或分析实例中,为了掌握好它的结构与实现,必须先了解编译原理中的“文法、句子、语法树”等相关概念。
1) 文法
文法是用于描述语言的语法结构的形式规则。没有规矩不成方圆,例如,有些人认为完美爱情的准则是“相互吸引、感情专一、任何一方都没有恋爱经历”,虽然最后一条准则较苛刻,但任何事情都要有规则,语言也一样,不管它是机器语言还是自然语言,都有它自己的文法规则。例如,中文中的“句子”的文法如下。
〈句子〉=〈主语〉|〈谓语〉|〈宾语〉 〈主语〉=〈代词〉|〈名词〉 〈谓语〉=〈动词〉 〈宾语〉=〈代词〉|〈名词〉 〈代词〉= 你|我|他 〈名词〉= 大学生|英语 〈动词〉= 是|学习
注:这里的符号“=”表示“定义为”的意思,用“〈”和“〉”括住的是非终结符,没有括住的是终结符。
2) 句子
句子是语言的基本单位,是语言集中的一个元素,它由终结符构成,能由“文法”推导出。例如,上述文法可以推出“我是大学生”,所以它是句子。
3) 语法树
语法树是句子结构的一种树型表示,它代表了句子的推导结果,它有利于理解句子语法结构的层次。图 1 所示是“我是大学生”的语法树。
有了以上基础知识,现在来介绍解释器模式的结构就简单了。解释器模式的结构与组合模式相似,不过其包含的组成元素比组合模式多,而且组合模式是对象结构型模式,而解释器模式是类行为型模式。
1. 模式的结构
解释器模式包含以下主要角色。
- 抽象表达式(Abstract Expression)角色:定义解释器的接口,约定解释器的解释操作,主要包含解释方法 interpret()。
- 终结符表达式(Terminal Expression)角色:是抽象表达式的子类,用来实现文法中与终结符相关的操作,文法中的每一个终结符都有一个具体终结表达式与之相对应。
- 非终结符表达式(Nonterminal Expression)角色:也是抽象表达式的子类,用来实现文法中与非终结符相关的操作,文法中的每条规则都对应于一个非终结符表达式。
- 环境(Context)角色:通常包含各个解释器需要的数据或是公共的功能,一般用来传递被所有解释器共享的数据,后面的解释器可以从这里获取这些值。
- 客户端(Client):主要任务是将需要分析的句子或表达式转换成使用解释器对象描述的抽象语法树,然后调用解释器的解释方法,当然也可以通过环境角色间接访问解释器的解释方法。
解释器模式的结构图如图 2 所示。
模式的应用场景
前面介绍了解释器模式的结构与特点,下面分析它的应用场景。
- 当语言的文法较为简单,且执行效率不是关键问题时。
- 当问题重复出现,且可以用一种简单的语言来进行表达时。
- 当一个语言需要解释执行,并且语言中的句子可以表示为一个抽象语法树的时候,如 XML 文档解释。
注意:解释器模式在实际的软件开发中使用比较少,因为它会引起效率、性能以及维护等问题。如果碰到对表达式的解释,在 Java 中可以用 Expression4J 或 Jep 等来设计。
模式的扩展
在项目开发中,如果要对数据表达式进行分析与计算,无须再用解释器模式进行设计了,Java 提供了以下强大的数学公式解析器:Expression4J、MESP(Math Expression String Parser) 和 Jep 等,它们可以解释一些复杂的文法,功能强大,使用简单。
现在以 Jep 为例来介绍该工具包的使用方法。Jep 是 Java expression parser 的简称,即 Java 表达式分析器,它是一个用来转换和计算数学表达式的 Java 库。通过这个程序库,用户可以以字符串的形式输入一个任意的公式,然后快速地计算出其结果。而且 Jep 支持用户自定义变量、常量和函数,它包括许多常用的数学函数和常量。