POJ 1637 Sightseeing tour ★混合图欧拉回路

题目大意】混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) 【 建模方法】 把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。 好了,现在每个点入度和出度之差均为偶数。那么将这个偶数除以2,得x。也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),就能保证出=入。如果每个点都是出=入,那么很明显,该图就存在欧拉回路。 现在的问题就变成了:我该改变哪些边,可以让每个点出=入?构造网络流模型。首先,有向边是不能改变方向的,要之无用,删。一开始不是把无向边定向了吗?定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入>出的点u,连接边(u, t)、容量为x,对于出>入的点v,连接边(s, v),容量为x(注意对不同的点x不同)。之后,察看是否有 满流(最大流=从源点出去的流量)的分配。有就是能有欧拉回路,没有就是没有。欧拉回路是哪个?察看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度=出度的欧拉图。 由于是满流,所以每个入>出的点,都有x条边进来,将这些进来的边反向,OK,入=出了。对于出>入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出>入,和t连接的条件是入>出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入=出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。 所以,就这样,混合图欧拉回路问题,解了。
#include 
 
   
    
  
#include 
  
    
      #include 
     
       #include 
      
        #include 
       
         #include 
        
          #include 
         
           #include 
           #include 
           
             #include 
            
              #include 
             
               #define MID(x,y) ((x+y)/2) #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; const int MAXV = 305; const int MAXE = 10005; struct node{ int u, v, flow; int opp; int next; }; struct Dinic{ node arc[MAXE]; int vn, en, head[MAXV]; //vn点个数(包括源点汇点),en边个数 int cur[MAXV]; //当前弧 int q[MAXV]; //bfs建层次图时的队列 int path[MAXE], top; //存dfs当前最短路径的栈 int dep[MAXV]; //各节点层次 void init(int n){ vn = n; en = 0; mem(head, -1); } void insert_flow(int u, int v, int flow){ arc[en].u = u; arc[en].v = v; arc[en].flow = flow; arc[en].opp = en + 1; arc[en].next = head[u]; head[u] = en ++; arc[en].u = v; arc[en].v = u; arc[en].flow = 0; //反向弧 arc[en].opp = en - 1; arc[en].next = head[v]; head[v] = en ++; } bool bfs(int s, int t){ mem(dep, -1); int lq = 0, rq = 1; dep[s] = 0; q[lq] = s; while(lq < rq){ int u = q[lq ++]; if (u == t){ return true; } for (int i = head[u]; i != -1; i = arc[i].next){ int v = arc[i].v; if (dep[v] == -1 && arc[i].flow > 0){ dep[v] = dep[u] + 1; q[rq ++] = v; } } } return false; } int solve(int s, int t){ int maxflow = 0; while(bfs(s, t)){ int i, j; for (i = 1; i <= vn; i ++) cur[i] = head[i]; for (i = s, top = 0;;){ if (i == t){ int mink; int minflow = 0x3fffffff; for (int k = 0; k < top; k ++) if (minflow > arc[path[k]].flow){ minflow = arc[path[k]].flow; mink = k; } for (int k = 0; k < top; k ++) arc[path[k]].flow -= minflow, arc[arc[path[k]].opp].flow += minflow; maxflow += minflow; top = mink; //arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内). i = arc[path[top]].u; } for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){ int v = arc[j].v; if (arc[j].flow && dep[v] == dep[i] + 1) break; } if (j != -1){ path[top ++] = j; i = arc[j].v; } else{ if (top == 0) break; dep[i] = -1; i = arc[path[-- top]].u; } } } return maxflow; } }dinic; int indeg[MAXV], outdeg[MAXV]; int main(){ int t; scanf("%d", &t); while (t --){ mem(indeg, 0); mem(outdeg, 0); int n, m; scanf("%d %d", &n, &m); dinic.init(n+2); for (int i = 0; i < m; i ++){ int u, v, w; scanf("%d %d %d", &u, &v, &w); indeg[v] ++, outdeg[u] ++; if (w == 0) dinic.insert_flow(u, v, 1); } bool ok = 1; int sum = 0; for (int i = 1; i <= n; i ++){ int x = abs(indeg[i] - outdeg[i]); if (x == 0) continue; if (x % 2 == 1){ ok = 0; break; } if (indeg[i] > outdeg[i]){ dinic.insert_flow(i, n+2, x/2); sum += x/2; } else{ dinic.insert_flow(n+1, i, x/2); } } if (!ok){ puts("impossible"); continue; } if (dinic.solve(n+1, n+2) == sum){ puts("possible"); } else{ puts("impossible"); } } return 0; } 
              
             
            
          
         
        
       
      
    
 
   

你可能感兴趣的:(poj)