Stream操作

1、创建Stream流
//创建一个顺序流
 Stream stream = alist.stream();
//创建一个并行流
 Stream parallelStream = alist.parallelStream();
//使用数组创建流
int [] array={1,3,5,7};
IntStream stream=Arrays.stream(array);
2、stream和parallelStream的简单区别

stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:


image.png

如果流中的数据量足够大,并行流可以加快处速度。
除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

3、遍历、匹配(find、match、foreach)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。

    public static void main(String[] args) {
       List list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

       // 遍历输出符合条件的元素
       list.stream().filter(x -> x > 6).forEach(System.out::println);
       // 匹配第一个
       Optional findFirst = list.stream().filter(x -> x > 6).findFirst();
       // 匹配任意(适用于并行流)
       Optional findAny = list.parallelStream().filter(x -> x > 6).findAny();
       // 是否包含符合特定条件的元素
       boolean anyMatch = list.stream().anyMatch(x -> x > 6);
       System.out.println("匹配第一个值:" + findFirst.get());
       System.out.println("匹配任意一个值:" + findAny.get());
       System.out.println("是否存在大于6的值:" + anyMatch);
   }
}
3、筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
案例一:筛选出Integer集合中大于7的元素,并打印出来**

public class StreamTest {
    public static void main(String[] args) {
        List list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
        Stream stream = list.stream();
        stream.filter(x -> x > 7).forEach(System.out::println);
    }
}

案例二: 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集),后文有详细介绍。

public class StreamTest {
    public static void main(String[] args) {
        List personList = new ArrayList();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        List fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
                .collect(Collectors.toList());
        System.out.print("高于8000的员工姓名:" + fiterList);
    }
}
4、映射

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:
map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。


image.png

案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

public class StreamTest {
    public static void main(String[] args) {
        String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
        List strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

        List intList = Arrays.asList(1, 3, 5, 7, 9, 11);
        List intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

        System.out.println("每个元素大写:" + strList);
        System.out.println("每个元素+3:" + intListNew);
    }
}

案例二:将员工的薪资全部增加1000。

public class StreamTest {
    public static void main(String[] args) {
        List personList = new ArrayList();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        // 不改变原来员工集合的方式
        List personListNew = personList.stream().map(person -> {
            Person personNew = new Person(person.getName(), 0, 0, null, null);
            personNew.setSalary(person.getSalary() + 10000);
            return personNew;
        }).collect(Collectors.toList());
        System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
        System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

        // 改变原来员工集合的方式
        List personListNew2 = personList.stream().map(person -> {
            person.setSalary(person.getSalary() + 10000);
            return person;
        }).collect(Collectors.toList());
        System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
        System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    }
}

案例三:将两个字符数组合并成一个新的字符数组。

public class StreamTest {
    public static void main(String[] args) {
        List list = Arrays.asList("m,k,l,a", "1,3,5,7");
        List listNew = list.stream().flatMap(s -> {
            // 将每个元素转换成一个stream
            String[] split = s.split(",");
            Stream s2 = Arrays.stream(split);
            return s2;
        }).collect(Collectors.toList());

        System.out.println("处理前的集合:" + list);
        System.out.println("处理后的集合:" + listNew);
    }
}
5、规约

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

    T reduce(T identity, BinaryOperator accumulator);
    @Override
   public final P_OUT reduce(final P_OUT identity, final BinaryOperator accumulator) {
       return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator));
   }


    Optional reduce(BinaryOperator accumulator);
   @Override
   public final Optional reduce(BinaryOperator accumulator) {
       return evaluate(ReduceOps.makeRef(accumulator));
   }


 U reduce(U identity,
                BiFunction accumulator,
                BinaryOperator combiner);
   @Override
   public final  R reduce(R identity, BiFunction accumulator, BinaryOperator combiner) {
       return evaluate(ReduceOps.makeRef(identity, accumulator, combiner));
   }

Optional reduce(BinaryOperator accumulator):第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
T reduce(T identity, BinaryOperator accumulator):流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。
案例一:求Integer集合的元素之和、乘积和最大值。

public class StreamTest {
    public static void main(String[] args) {
        List list = Arrays.asList(1, 3, 2, 8, 11, 4);
        // 求和方式1
        Optional sum = list.stream().reduce((x, y) -> x + y);
        // 求和方式2
        Optional sum2 = list.stream().reduce(Integer::sum);
        // 求和方式3
        Integer sum3 = list.stream().reduce(0, Integer::sum);
        
        // 求乘积
        Optional product = list.stream().reduce((x, y) -> x * y);

        // 求最大值方式1
        Optional max = list.stream().reduce((x, y) -> x > y ? x : y);
        // 求最大值写法2
        Integer max2 = list.stream().reduce(1, Integer::max);

        System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
        System.out.println("list求积:" + product.get());
        System.out.println("list求和:" + max.get() + "," + max2);
    }
}

案例二:求所有员工的工资之和和最高工资。

public class StreamTest {
    public static void main(String[] args) {
        List personList = new ArrayList();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        // 求工资之和方式1:
        Optional sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
        // 求工资之和方式2:
        Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
                (sum1, sum2) -> sum1 + sum2);
        // 求工资之和方式3:
        Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);

        // 求最高工资方式1:
        Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
                Integer::max);
        // 求最高工资方式2:
        Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
                (max1, max2) -> max1 > max2 ? max1 : max2);

        System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
        System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
    }
}
5、收集(collect)、归集(toList、toSet、toMap)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。
下面用一个案例演示toList、toSet和toMap:

public class StreamTest {
    public static void main(String[] args) {
        List list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
        List listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
        Set set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

        List personList = new ArrayList();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        
        Map map = personList.stream().filter(p -> p.getSalary() > 8000)
                .collect(Collectors.toMap(Person::getName, p -> p));
        System.out.println("toList:" + listNew);
        System.out.println("toSet:" + set);
        System.out.println("toMap:" + map);
    }
}
六、统计(count、averaging)

Collectors提供了一系列用于数据统计的静态方法:
计数:count
平均值:averagingInt、averagingLong、averagingDouble
最值:maxBy、minBy
求和:summingInt、summingLong、summingDouble
统计以上所有:summarizingInt、summarizingLong、summarizingDouble
案例:统计员工人数、平均工资、工资总额、最高工资。

public class StreamTest {
    public static void main(String[] args) {
        List personList = new ArrayList();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

        // 求总数
        Long count = personList.stream().collect(Collectors.counting());
        // 求平均工资
        Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
        // 求最高工资
        Optional max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
        // 求工资之和
        Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
        // 一次性统计所有信息
        DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

        System.out.println("员工总数:" + count);
        System.out.println("员工平均工资:" + average);
        System.out.println("员工工资总和:" + sum);
        System.out.println("员工工资所有统计:" + collect);
    }
}
七、分组

-分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。

-分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。


image.png
public static 
   Collector>> partitioningBy(Predicate predicate) {
       return partitioningBy(predicate, toList());
   }

public static  Collector>>
   groupingBy(Function classifier) {
       return groupingBy(classifier, toList());
   }

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

public class StreamTest {
public static void main(String[] args) {
    List personList = new ArrayList();
    personList.add(new Person("Tom", 8900, "male", "New York"));
    personList.add(new Person("Jack", 7000, "male", "Washington"));
    personList.add(new Person("Lily", 7800, "female", "Washington"));
    personList.add(new Person("Anni", 8200, "female", "New York"));
    personList.add(new Person("Owen", 9500, "male", "New York"));
    personList.add(new Person("Alisa", 7900, "female", "New York"));

    // 将员工按薪资是否高于8000分组
       Map> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
       // 将员工按性别分组
       Map> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
       // 将员工先按性别分组,再按地区分组
       Map>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
       System.out.println("员工按薪资是否大于8000分组情况:" + part);
       System.out.println("员工按性别分组情况:" + group);
       System.out.println("员工按性别、地区:" + group2);
}
}
七、排序

sorted,中间操作。有两种排序:

  • sorted():自然排序,流中元素需实现Comparable接口
  • sorted(Comparator com):Comparator排序器自定义排序
   Stream sorted();

   @Override
   public final Stream sorted() {
       return SortedOps.makeRef(this);
   }

    Stream sorted(Comparator comparator);

    @Override
   public final Stream sorted(Comparator comparator) {
       return SortedOps.makeRef(this, comparator);
   }

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

public class StreamTest {
    public static void main(String[] args) {
        List personList = new ArrayList();

        personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
        personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
        personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 8800, 26, "male", "New York"));
        personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

        // 按工资升序排序(自然排序)
        List newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
                .collect(Collectors.toList());
        // 按工资倒序排序
        List newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
                .map(Person::getName).collect(Collectors.toList());
        // 先按工资再按年龄升序排序
        List newList3 = personList.stream()
                .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
                .collect(Collectors.toList());
        // 先按工资再按年龄自定义排序(降序)
        List newList4 = personList.stream().sorted((p1, p2) -> {
            if (p1.getSalary() == p2.getSalary()) {
                return p2.getAge() - p1.getAge();
            } else {
                return p2.getSalary() - p1.getSalary();
            }
        }).map(Person::getName).collect(Collectors.toList());

        System.out.println("按工资升序排序:" + newList);
        System.out.println("按工资降序排序:" + newList2);
        System.out.println("先按工资再按年龄升序排序:" + newList3);
        System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
    }
}
七、去重、合并(distinct、skip、limit)

流也可以进行合并、去重、限制、跳过等操作。

Stream distinct();

@Override
   public final Stream distinct() {
       return DistinctOps.makeRef(this);
   }


Stream skip(long n);

@Override
   public final Stream skip(long n) {
       if (n < 0)
           throw new IllegalArgumentException(Long.toString(n));
       if (n == 0)
           return this;
       else
           return SliceOps.makeRef(this, n, -1);
   }

Stream limit(long maxSize);

 @Override
   public final Stream limit(long maxSize) {
       if (maxSize < 0)
           throw new IllegalArgumentException(Long.toString(maxSize));
       return SliceOps.makeRef(this, 0, maxSize);
   }
image.png
public class StreamTest {
    public static void main(String[] args) {
        String[] arr1 = { "a", "b", "c", "d" };
        String[] arr2 = { "d", "e", "f", "g" };

        Stream stream1 = Stream.of(arr1);
        Stream stream2 = Stream.of(arr2);
        // concat:合并两个流 distinct:去重
        List newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
        // limit:限制从流中获得前n个数据
        List collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
        // skip:跳过前n个数据  这里的1代表把1代入后边的计算表达式
        List collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

        System.out.println("流合并:" + newList);
        System.out.println("limit:" + collect);
        System.out.println("skip:" + collect2);
    }
}

你可能感兴趣的:(Stream操作)